11.等比數(shù)列{an}中,如果a1+a2=40,a3+a4=60,那么a5+a6=90.

分析 在等比數(shù)列{an}中,a1+a2,a3+a4,a5+a6構(gòu)成等比數(shù)列,由此能求出a5+a6

解答 在等比數(shù)列{an}中,
∵a1+a2=40,a3+a4=60,a1+a2,a3+a4,a5+a6構(gòu)成等比數(shù)列,
∴a5+a6=60×$\frac{60}{40}$=90.
故答案為:90.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知F1,F(xiàn)2為雙曲線C:x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn),點(diǎn)M是雙曲線C左支上的一點(diǎn),直線MF2垂直雙曲線的一條漸近線于點(diǎn)N,且N為線段MF2的中點(diǎn),則b=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若sin(3π+θ)=cos(π+θ),則2sin2θ+3sinθcosθ-2cos2θ=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知角θ終邊過(1,2),則sin2θ-tan2θ=( 。
A.$\frac{1}{2}$B.0C.$\frac{32}{15}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)離散型隨機(jī)變量X的分布列為P(X=i)=$\frac{a}{N}$,i=1,2,…,N,則a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)6的二項(xiàng)展開式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,已知(sinA-sinB)(a+b)=($\frac{1}{2}$a-c)sinC
(Ⅰ)求cosB的值:
(Ⅱ)若b=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$不共線,向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,若函數(shù)g(x)=(x$\overrightarrow{a}$+$\overrightarrow$)•(x$\overrightarrow$)(x∈R)有最小值,則( 。
A.$\overrightarrow{a}⊥\overrightarrow$B.|$\overrightarrow{a}$|>|$\overrightarrow$|C.θ∈(0,$\frac{π}{2}$)D.$θ∈(\frac{π}{2},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=log2x,任取一個(gè)x0∈[$\frac{1}{2}$,2]使f(x0)>0的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案