1.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+\frac{1}{2}x,x<0\\{e^x}-1,x≥0\end{array}$,若函數(shù)y=f(x)-kx有3個零點,則實數(shù)k的取值范圍是( 。
A.(-1,1)B.(1,+∞)C.[2,+∞)D.[1,2)

分析 由f(0)=ln1=0,可得:x=0是函數(shù)y=f(x)-kx的一個零點;當x<0時,由f(x)=kx,得-x2+$\frac{1}{2}$x=kx,解得x=$\frac{1}{2}$-k,由x=$\frac{1}{2}$-k<0,可得:k>$\frac{1}{2}$;當x>0時,函數(shù)f(x)=ex-1,由f'(x)∈(1,+∞),進而可得k>1;綜合討論結(jié)果,可得答案.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+\frac{1}{2}x,x<0\\{e^x}-1,x≥0\end{array}$,
∴f(0)=ln1=0,
∴x=0是函數(shù)y=f(x)-kx的一個零點,
當x<0時,由f(x)=kx,
得-x2+$\frac{1}{2}$x=kx,
即-x+$\frac{1}{2}$=k,解得x=$\frac{1}{2}$-k,
由x=$\frac{1}{2}$-k<0,解得k>$\frac{1}{2}$,
當x>0時,函數(shù)f(x)=ex-1,
f'(x)=ex∈(1,+∞),
∴要使函數(shù)y=f(x)-kx在x>0時有一個零點,
則k>1,
∴k>1,
即實數(shù)k的取值范圍是(1,+∞),
故選:B.

點評 本題考查的知識點是函數(shù)零點及零點的個數(shù),二次函數(shù)的圖象和性質(zhì),指數(shù)型函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|x-$\sqrt{2}$|-|x+$\sqrt{2}$|最大值為M,
(1)求實數(shù)M的值;
(2)若?x∈R,f(x)≥t2-(2+$\sqrt{2}$)t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)是定義在R上且以2為周期的偶函數(shù),當0≤x≤1時,f(x)=x2.那么,當1≤x≤2時,f(x)=(x-2)2;若直線y=x+a與曲線y=f(x)恰有兩個公共點,則實數(shù)a的值是a=2k或$a=2k-\frac{1}{4}(k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,△PAD與正方形ABCD共用一邊AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,點E是棱PA的中點.
(1)求證:PC∥平面BDE;
(2)若直線PA與平面ABCD所成角為60°,求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校高三年級共有2000名學(xué)生,其中男生有1200人,女生有800人.為了了解年級學(xué)生的睡眠時間的情況,現(xiàn)按照分層抽樣的方法從中抽取了100名學(xué)生的睡眠時間的樣本數(shù)據(jù),并繪成了如圖的頻率分布直方圖.
(1)求①樣本中女生的人數(shù);
②估計該校高三學(xué)生睡眠時間不少于7小時的概率;
(2)若已知所抽取樣本中睡眠時間少于7小時的女生有5人,請完成下面的列聯(lián)表,并判斷是否有95%的把握認為睡眠時間與性別有關(guān)?
性別時間男生女生
睡眠時間少于7小時
睡眠時間不少于7小時
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ex(x2+ax+a).
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍;
(3)若曲線y=f(x)存在兩條互相垂直的切線,求實數(shù)a的取值范圍.(只需直接寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{-{x}^{2}+ax-a}{{e}^{x}}$(x>0,a∈R).
(1)求函數(shù)f(x)的極值點;
(2)設(shè)g(x)=$\frac{f(x)+f′(x)}{x-1}$,若函數(shù)g(x)在(0,1)∪(1,+∞)內(nèi)有兩個極值點x1,x2,求證:g(x1)•g(x2)<$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l2,l3在l1的同側(cè).l1與l2的距離是d,l2與l3的距離是2d,邊長為1的正三角形ABC的三個頂點分別在l1,l2,l3上,則d=$\frac{{\sqrt{21}}}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.平面直角坐標系中有A(0,1),B(2,1),C(3,4),D(-1,2)兩點
(1)求證:A,B,C,D四點共面;
(2)記(1)中的圓的圓心為M,直線l:2x-y-2=0與圓M相交于點P、Q,求弦長PQ.

查看答案和解析>>

同步練習(xí)冊答案