6.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<π)經(jīng)過(guò)點(diǎn)($\frac{π}{12}$,-2),($\frac{7π}{12}$,2),且在區(qū)間($\frac{π}{12}$,$\frac{7π}{12}$)上為單調(diào)函數(shù),設(shè)an=nf($\frac{nπ}{3}$)(n∈N*),則數(shù)列{an}的前30項(xiàng)和S30為( 。
A.-10$\sqrt{3}$B.-$\sqrt{3}$C.$\sqrt{3}$D.10$\sqrt{3}$

分析 由題意可得:$\frac{2π}{ω}$=2×$(\frac{7π}{12}-\frac{π}{12})$,解得ω.代入2=2$sin(\frac{7π}{6}+φ)$,解得φ.可得f(x)=2sin$(2x-\frac{2π}{3})$.可得an=nf($\frac{nπ}{3}$)=2n$sin(\frac{2nπ}{3}-\frac{2π}{3})$,利用三角函數(shù)與數(shù)列的周期性即可得出.

解答 解:∵函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<π)經(jīng)過(guò)點(diǎn)($\frac{π}{12}$,-2),($\frac{7π}{12}$,2),且在區(qū)間($\frac{π}{12}$,$\frac{7π}{12}$)上為單調(diào)函數(shù),
∴$\frac{2π}{ω}$=2×$(\frac{7π}{12}-\frac{π}{12})$,解得ω=2.
∴2=2$sin(\frac{7π}{6}+φ)$,解得φ=-$\frac{2π}{3}$.
∴f(x)=2sin$(2x-\frac{2π}{3})$.
∴an=nf($\frac{nπ}{3}$)=2n$sin(\frac{2nπ}{3}-\frac{2π}{3})$,
數(shù)列$\{sin(\frac{2nπ}{3}-\frac{2π}{3})\}$的周期為3.
a1=0,a2=4$sin\frac{2π}{3}$=2$\sqrt{3}$,a3=-6$sin\frac{2π}{3}$=-3$\sqrt{3}$,
∴a1+a2+a3=-$\sqrt{3}$,
∴a1+a2+…+a6+…+a30
=-10$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)、數(shù)列的求和,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}1≤x≤2\\ y≤2\\ 2x-y≤2\end{array}\right.$,則z=2x+y的最大值為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.登山族為了了解某山高y(km)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了4次山高與相應(yīng)的氣溫,并制作了對(duì)照表:
氣溫x (℃)181310-1
山高y(km)24343864
由表中數(shù)據(jù),得到線性回歸方程$\widehat{y}$=-2$\widehat{x}$+$\widehat{a}$($\widehat{a}$∈R),則此估計(jì)山高為72(km)處的氣溫為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.命題p:?x∈[1,2],使x2+2x≥a成立;命題q:?x∈R,都有3x-9x<a恒成立.若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=2lnx-ax在點(diǎn)(1,f(1))處的切線與直線x+6y=0垂直,則實(shí)數(shù)a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.甲、乙兩人獨(dú)立地對(duì)同一目標(biāo)各射擊一次,命中率分別為0.6和0.7,在目標(biāo)被擊中的情況下,甲、乙同時(shí)擊中目標(biāo)的概率為( 。
A.$\frac{21}{44}$B.$\frac{15}{22}$C.$\frac{21}{50}$D.$\frac{9}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率與雙曲線C2:$\frac{{y}^{2}}{3}$-x2=1的離心率互為倒數(shù),且C1內(nèi)切于圓O:x2+y2=4.
(1)求橢圓C1的方程;
(2)在橢圓C1落在第一象限的圖象上任取一點(diǎn)作C1的切線l,求l與坐標(biāo)軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年份2009201020112012201320142015
年份代號(hào)t1234567
人均純收入y2.93.33.64.44.85.25.9
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2016年農(nóng)村居民家庭人均純收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若定義在R上的函數(shù)f(x)滿足:當(dāng)0≤x<2時(shí),f(x)=2x-x2,當(dāng)2k≤x<2k+2(k∈N+)時(shí),f(x)=2f(x-2),則函數(shù)F(x)=lnx-f(x)在區(qū)間(0,16)內(nèi)的零點(diǎn)個(gè)數(shù)為15.

查看答案和解析>>

同步練習(xí)冊(cè)答案