6.已知復數(shù)z滿足(1+i)z=1(為虛數(shù)單位),則z的模為$\frac{\sqrt{2}}{2}$.

分析 利用復數(shù)的運算法則、模的計算公式即可得出.

解答 解:∵(1+i)z=1,∴(1-i)(1+i)z=1-i,
∴z=$\frac{1}{2}-\frac{1}{2}i$,
∴|z|=$\sqrt{(\frac{1}{2})^{2}+(-\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查了復數(shù)的運算法則、模的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x+a|-|2x-3|,a∈R.
(1)若a=2,求不等式f(x)≥-3的解集;
(2)若存在實數(shù)x使得f(x)≥2a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設復數(shù)z滿足z=$\frac{2}{i-1}$,則z=( 。
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,A=$\frac{π}{3}$,BC=3,則AB+AC的長可表示為( 。
A.4$\sqrt{3}$sin(B+$\frac{π}{3}$)B.6sin(B+$\frac{π}{3}$)C.4$\sqrt{3}$sin(B+$\frac{π}{6}$)D.6sin(B+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.等比數(shù)列 {an}的前n項和為Sn,且a3=2S2+1,a4=2S3+1,則公比q為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經(jīng)過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元. 
(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.甲、乙、丙三人一起玩“黑白配”游戲:甲、乙、丙三人每次都隨機出“手心(白)”、“手背(黑)”中的某一個手勢,當其中一個人出示的手勢與另外兩人都不一樣時,這個人勝出;其他情況,不分勝負.則一次游戲中甲勝出的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=axex,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x+b.
(1)求實數(shù)a,b的值;
(2)設函數(shù)g(x)=f(x)-x2-2x,求函數(shù)g(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,是否存在實數(shù)k,使得對于任意的x∈(-∞,0),都有g(x)≤kx恒成立?若存在,求出實數(shù)k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.定義:如果一個菱形的四個頂點均在一個橢圓上,那么該菱形叫做這個橢圓的內(nèi)接菱形,且該菱形的對角線的交點為這個橢圓的中心.
如圖,在平面直角坐標系xOy中,設橢圓$\frac{x^2}{4}$+y2=1的所有內(nèi)接菱形構成的集合為F.
(1)求F中菱形的最小的面積;
(2)是否存在定圓與F中的菱形都相切?若存在,求出定圓的方程;若不存在,說明理由;
(3)當菱形的一邊經(jīng)過橢圓的右焦點時,求這條邊所在的直線的方程.

查看答案和解析>>

同步練習冊答案