分析 (1)利用數(shù)列遞推關(guān)系式,結(jié)合an與Sn的關(guān)系得出結(jié)論;
(2)利用分類(lèi)討論思想寫(xiě)出數(shù)列通項(xiàng),結(jié)合等比數(shù)列再進(jìn)行分類(lèi)求和.
解答 (1)證明:∵對(duì)任意的n∈N*,有an+2=3Sn-Sn+1+3,①
∴對(duì)任意的n∈N*,n≥2,有an+1=3Sn-1-Sn+3.②
①-②,得an+2-an+1=3an-an+1,即an+2=3an,n≥2.
又∵a1=1,a2=2,
∴a3=3S1-S2+3=3a1-(a1+a2)+3=3a1.
∴對(duì)一切n∈N*,an+2=3an.
∵an≠0,
∴$\frac{{a}_{n+2}}{{a}_{n}}$=3,
∴數(shù)列{a2n-1}是首項(xiàng)a1=1,公比為3的等比數(shù)列;數(shù)列{a2n}是首項(xiàng)a2=2,公比為3的等比數(shù)列.
∴a2n-1=3n-1,a2n=2×3n-1.
∴an=$\left\{\begin{array}{l}{{3}^{\frac{n+1}{2}-1(n為奇數(shù))}}\\{{2}^{\frac{n}{2}-1(n為偶數(shù))}}\end{array}\right.$.
(2)解:由(1)知,a2n-1=3n-1,a2n=2×3n-1.
則S2n=a1+a2+…+a2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=(1+3+…+3n-1)+2×(1+3+…+3n-1)=3×(1+3+…+3n-1)=$\frac{3({3}^{n}-1)}{2}$,
故S2n-1=S2n-a2n=$\frac{3({3}^{n}-1)}{2}$-2×3n-1=$\frac{3}{2}$×(5×3n-2-1).
綜上所述,Sn=$\left\{\begin{array}{l}{\frac{3}{2}(5×{3}^{\frac{n-2}{2}-1}),(n=2k+1,k∈{N}^{+})}\\{\frac{3}{2}({3}^{\frac{n}{2}-1}),(n=2k,k∈{N}^{+})}\end{array}\right.$.
點(diǎn)評(píng) 本題主要考查數(shù)列遞推關(guān)系式、等比數(shù)列通項(xiàng)公式和求和公式,結(jié)合轉(zhuǎn)化思想和分類(lèi)討論思想求解數(shù)列問(wèn)題,意在考查考生對(duì)數(shù)列遞推關(guān)系的理解和運(yùn)算求解能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k=5 | B. | k≤5 | C. | k<5 | D. | k>5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線l平行與平面α內(nèi)的無(wú)數(shù)條直線,則l∥α | |
B. | 若直線a?α,則a∥α | |
C. | 若直線a∥α,b?α,則a∥b | |
D. | 若直線a∥b,b?α,直線a平行與平面內(nèi)的無(wú)數(shù)條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,3] | B. | [2,3) | C. | (-∞,3) | D. | (-3,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{3}$] | C. | [$\frac{1}{3}$,1) | D. | [$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com