5.已知定義在R上的偶函數(shù)y=f(x)滿(mǎn)足f(x)=f(1-x),當(dāng)$x∈[{0,\frac{1}{2}}]$時(shí),f(x)=-4x2+4x,則函數(shù)g(x)=f(x)-ln(x+1)的零點(diǎn)個(gè)數(shù)為4.

分析 求出f(x)的周期和對(duì)稱(chēng)軸,做出f(x)和y=ln(x+1)的函數(shù)圖象,根據(jù)函數(shù)圖象的交點(diǎn)個(gè)數(shù)判斷.

解答 解:∵f(x)=f(1-x),∴f(x)的圖象關(guān)于x=$\frac{1}{2}$對(duì)稱(chēng),
又f(x)是偶函數(shù),∴f(x)=f(1-x)=f(x-1),
∴f(x)的周期是T=1.
令g(x)=0得f(x)=ln(x+1),
做出f(x)和y=ln(x+1)的函數(shù)圖象如圖所示:

由圖象可知f(x)和y=ln(x+1)的函數(shù)圖象有4個(gè)交點(diǎn),
∴g(x)=f(x)-ln(x+1)有4個(gè)零點(diǎn).
故答案為:4.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)個(gè)數(shù)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知△ABC的三個(gè)內(nèi)角A、B、C滿(mǎn)足A+B=2C,$\frac{1}{cosA}$+$\frac{1}{cosC}$=-$\frac{\sqrt{2}}{cosB}$,則cos$\frac{A-C}{2}$的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若x,y滿(mǎn)足 $\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,則2x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列選項(xiàng)敘述錯(cuò)誤的是( 。
A.命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
B.若p∨q為真命題,則p、q均為真命題
C.若命題p:?x∈R,x2+x+1≠0,則?p:?x∈R,x2+x+1=0
D.a,b,c∈R,則“ac2>bc2”是“a>b”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,若a=bcosC+csinB.則B=45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.圓(x-2)2+(y+3)2=5的圓心坐標(biāo)和半徑分別為(  )
A.(-2,3),5B.$(-2,3),\sqrt{5}$C.(2,-3),5D.$(2,-3),\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,|{\overrightarrow a-2\overrightarrow b}|=2\sqrt{10}$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左右頂點(diǎn)為A1,A2,左右焦點(diǎn)為F1,F(xiàn)2,P為雙曲線C上異于頂點(diǎn)的一動(dòng)點(diǎn),直線PA1斜率為k1,直線PA2斜率為k2,且k1k2=1,又△PF1F2內(nèi)切圓與x軸切于點(diǎn)(1,0),則雙曲線方程為(  )
A.x2-y2=1B.x2-$\frac{{y}^{2}}{2}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均為非零實(shí)數(shù)),若f(2012)=6,則f(2013)=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案