11.(1)已知sinα=$\frac{12}{13}$,并且α是第二象限角,求cosα,tanα,cotα
(2)已知cosα=-$\frac{4}{5}$,求sinα,tanα

分析 (1)利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),求得要求式子的值.
(2)分類討論,利用同角三角函數(shù)的基本關(guān)系,求得sinα,tanα的值.

解答 解:(1)∵sinα=$\frac{12}{13}$,并且α是第二象限角,
∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{5}{13}$,tanα=$\frac{sinα}{cosα}$=-$\frac{12}{5}$,cotα=$\frac{1}{tanα}$=-$\frac{5}{12}$.
(2)已知cosα=-$\frac{4}{5}$,∴α是第二或第三象限角.
若α是第二象限角,則sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{3}{5}$,tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$;
若α是第三象限角,則sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{3}{5}$,tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{{{i^{2016}}}}{3+2i}$,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}\;,x≤0\\-{x^2}+1,x>0\end{array}$,若f(a)=$\frac{1}{2}$,則實(shí)數(shù)a的值為-1或$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若關(guān)于x的不等式3a-ax-x2>0有實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的各項(xiàng)均大于1,前n項(xiàng)和Sn滿足2Sn=an2+n-1.
(1)求a1及數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(1-an)•2${\;}^{{a}_{n}-1}$,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.把半徑為2的圓分成相等的四弧,再將四弧圍成星形放在半徑為2的圓內(nèi),現(xiàn)在往該圓內(nèi)任投一點(diǎn),此點(diǎn)落在星形內(nèi)的概率為$\frac{4}{π}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax2+2x-ln(x+1)(a為常數(shù))
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若x∈R,n∈N,定義Mxn=x(x+1)(x+2)…(x+n-1),例如,M-43=(-4)(-3)(-2)=-24,則函數(shù)f(x)=Mx-511•sinx的奇偶性是( 。
A.是偶函數(shù)不是奇函數(shù)B.是奇函數(shù)不是偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.(文)若三條直線a、b、c兩兩異面,它們所成的角都相等且存在一個(gè)平面與這三條直線都平行,則a與b所成的夾角為60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案