已知sinα-cosα=-
4
5
,則sinα•cosα=
 
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:把已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間基本關系化簡,整理求出sinα•cosα的值即可.
解答: 解:把sinα-cosα=-
4
5
,兩邊平方得:(sinα-cosα)2=1-2sinαcosα=
16
25
,
則sinα•cosα=
9
50
,
故答案為:
9
50
點評:此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且C上任意一點到兩個焦點的距離之和都為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 如圖,設A是橢圓長軸一個頂點,直線l與橢圓交于P、Q(不同于A),若∠PAQ=90°,求證直線l恒過x軸上的一個定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20092
)(1-
1
20102

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)一個周期的圖象如圖所示,試確定A、ω、φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanαtanβ+1=0,且-
π
2
<α<β<
π
2
,則sinα+cosβ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由曲線y=f(x),直線x=a,x=b及x軸所圍成的曲邊梯形的面積是( 。
A、
b
a
f(x)dx
B、-
b
a
f(x)dx
C、
b
a
|f(x)|dx
D、|
b
a
f(x)dx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定區(qū)域D:
x+4y≥0
x+y≤4
x+y≥2
x≥0
,令點集T={(x0,y0)∈D|x0,y0∈Z},(x0,y)是z=x+y在D上取得最大值或最小值的點},則T中的點最多能確定三角形的個數(shù)為( 。
A、15B、25C、28D、32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2ωx-
π
6
)的圖象關于直線x=
π
3
對稱,其中ω∈(-
1
2
,
5
2
),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2013年6月在成都舉行的“《財富》全球論壇”,是繼北京、上海、香港后,“論壇”第四次來到中國,也是首次登陸中國內(nèi)陸地區(qū),在一場分論壇中,A、B、C三個國家共派了五名嘉賓發(fā)言,其中A、B國各派兩名,C國派一名.如果要求同一國家的嘉賓不能連續(xù)出場,則不同的安排順序有( 。
A、96種B、48種
C、40種D、32種

查看答案和解析>>

同步練習冊答案