分析 (1)利用拋物線的定義,建立方程即可求出p的值,進而確定答案.
(2)利用點差法,即可求弦PQ的中點坐標(biāo).
解答 解:(1)由題知3+$\frac{p}{2}$=5,
∴p=4,
故C的方程為y2=8x;
(2)F(2,0),設(shè)P( x1,y1)、Q( x2,y2),中點( x0,y0),
則y12=8x1,y22=8x2,
兩式相減得(y1+y2)×2=8,
∴y0=2.
又中點在直線PQ上,$\frac{{y}_{0}}{{x}_{0}-2}$=2,
∴x0=3,即中點坐標(biāo)為(3,2).
點評 本題主要考查拋物線的標(biāo)準(zhǔn)方程的應(yīng)用和拋物線的基本性質(zhì).考查對基礎(chǔ)知識的靈活運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y-1)2=5 | B. | (x+1)2+(y+1)2=5 | C. | (x-1)2+y2=5 | D. | x2+(y-1)2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是銳角△ | B. | 是直角△ | C. | 是鈍角△ | D. | 是銳角△或鈍角△ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在(0,+∞)上是增函數(shù) | B. | f(x)在$(0,\frac{1}{e})$上是增函數(shù) | ||
C. | 當(dāng)x∈(0,1)時,f(x)有最小值$-\frac{1}{e}$ | D. | f(x)在定義域內(nèi)無極值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016f(2015)>2015f(2016) | B. | 2014f(2014)>2015f(2015) | ||
C. | 2015f(2016)>2016f(2015) | D. | 2015f(2015)>2014f(2014) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{3}{2}$,y=4 | B. | x=-$\frac{3}{2}$,y=4 | C. | x=-$\frac{3}{2}$,y=-4 | D. | x=$\frac{3}{2}$,y=-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com