A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 3 | D. | $\frac{1}{2}$ |
分析 由題意可得C(-a,0),F(xiàn)(-c,0),設(shè)A(m,n),可得B(-m,-n),運用中點坐標公式和三點共線的條件:斜率相等,結(jié)合離心率公式計算即可得到所求值.
解答 解:由題意可得C(-a,0),F(xiàn)(-c,0),
設(shè)A(m,n),可得B(-m,-n),
可得BC的中點H為(-$\frac{a+m}{2}$,-$\frac{n}{2}$),
由A,F(xiàn),H三點共線,可得:
kAF=kHF,
即為$\frac{n}{m+c}$=$\frac{\frac{n}{2}}{-c+\frac{a+m}{2}}$,
即m+c=-2c+a+m,
即有a=3c,e=$\frac{c}{a}$=$\frac{1}{3}$.
故選:A.
點評 本題考查橢圓的離心率的求法,注意運用中點坐標公式和三點共線的條件:斜率相等,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | 9 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲班 | 10 | 12 | 15 | 18 | 24 | 36 |
乙班 | 12 | 16 | 22 | 26 | 28 | 38 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | $\frac{1}{4}$ | C. | 4 | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | $\sqrt{3}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B=$\frac{π}{3}$ | B. | 2b=a+c | ||
C. | △ABC是直角三角形 | D. | a2=b2+c2或2B=A+C |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com