8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與x軸負半軸交于點C,A為橢圓第一象限上的點,直線OA交橢圓于另一點B,橢圓的左焦點為F,若直線AF平分線段BC,則橢圓的離心率等于( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.3D.$\frac{1}{2}$

分析 由題意可得C(-a,0),F(xiàn)(-c,0),設(shè)A(m,n),可得B(-m,-n),運用中點坐標公式和三點共線的條件:斜率相等,結(jié)合離心率公式計算即可得到所求值.

解答 解:由題意可得C(-a,0),F(xiàn)(-c,0),
設(shè)A(m,n),可得B(-m,-n),
可得BC的中點H為(-$\frac{a+m}{2}$,-$\frac{n}{2}$),
由A,F(xiàn),H三點共線,可得:
kAF=kHF
即為$\frac{n}{m+c}$=$\frac{\frac{n}{2}}{-c+\frac{a+m}{2}}$,
即m+c=-2c+a+m,
即有a=3c,e=$\frac{c}{a}$=$\frac{1}{3}$.
故選:A.

點評 本題考查橢圓的離心率的求法,注意運用中點坐標公式和三點共線的條件:斜率相等,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知等式 x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定義映射f(a1,a2,a3,a4)=b1-b2+b3-b4,則f(2,0,1,6)等于( 。
A.-3B.3C.9D.2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.長時間上網(wǎng)嚴重影響著學生的健康,某校為了解甲、乙兩班學生上網(wǎng)的時長,分別從這兩個班中隨機抽取6名同學進行調(diào)查,將他們平均每周上網(wǎng)時長作為樣本,統(tǒng)計數(shù)據(jù)如表:
甲班101215182436
乙班121622262838
如果學生平均每周上網(wǎng)的時長超過19小時,則稱為“過度上網(wǎng)”.
(1)從甲班的樣本中有放回地抽取3個數(shù)據(jù),求恰有1個數(shù)據(jù)為“過度上網(wǎng)”的概率;
(2)從甲班、乙班的樣本中各隨機抽取2名學生的數(shù)據(jù),記“過度上網(wǎng)”的學生人數(shù)為X,寫出X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,A1A=AB=AC,D是AB中點.
(1)記平面B1C1D∩平面A1C1CA=l,在圖中作出l,并說明畫法;
(2)求直線l與平面B1C1CB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.橢圓C:$\frac{{x}^{2}}{4}$+y2=1,A($\sqrt{3}$,$\frac{1}{2}$),B(-$\sqrt{3}$,-$\frac{1}{2}$),點P是橢圓C上的動點,直線PA、PB的斜率為k1,k2,則k1k2=(  )
A.-4B.$\frac{1}{4}$C.4D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知F是橢圓C:$\frac{x^2}{20}+\frac{y^2}{4}$=1的右焦點,P是C上一點,A(-2,1),當△APF周長最小時,其面積為( 。
A.4B.8C.$\sqrt{3}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.一個多面體的三視圖如圖所示,則該幾何體的外接球(幾何體的所有頂點都在球面上)的體積為$4\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.△ABC中,若sinC=(${\sqrt{3}$cosA+sinA)cosB,則( 。
A.B=$\frac{π}{3}$B.2b=a+c
C.△ABC是直角三角形D.a2=b2+c2或2B=A+C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.某高中學校三個年級共有學生3 000人,其中一、二、三年級的人數(shù)比為2:3:1,用分層抽樣的方法從中抽取一個容量為180的樣本,則高三年級應抽取學生人數(shù)為30.

查看答案和解析>>

同步練習冊答案