10.若球O內(nèi)切于棱長(zhǎng)為2的正方體,則球O的表面積為4π.

分析 棱長(zhǎng)為2的正方體的內(nèi)切球的半徑r=1,由此能求出其表面積.

解答 解:棱長(zhǎng)為2的正方體的內(nèi)切球的半徑r=1,
表面積=4πr2=4π.
故答案為4π.

點(diǎn)評(píng) 本題考查正方體的內(nèi)切球的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}滿足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,則a2009=1;a2004=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體是( 。
A.棱柱B.圓柱C.棱錐D.圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義在R上的函數(shù)f(x)對(duì)任意x1,x2(x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且函數(shù)y=f(x+1)的圖象關(guān)于原點(diǎn)對(duì)稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2+2),則當(dāng)1≤s≤4時(shí),$\frac{t-2s}{s+t}$的取值范圍是( 。
A.[-3,-$\frac{1}{2}$)B.[-3,-$\frac{1}{2}$]C.[-5,-$\frac{1}{2}$)D.[-5,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖
(I)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(II)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
參考數(shù)據(jù):$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{u}-\overline{y})^{2}}}$,$\sum_{i=1}^{n}$(ti-$\overline{t}$)(yi-$\overline{y}$)=$\sum_{i=1}^{n}$tiyi-$\overline{y}$•$\sum_{i=1}^{n}$ti-$\overline{t}$•$\sum_{i=1}^{n}$yi+n$\overline{t}$•$\overline{y}$.
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t 中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{u}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)y=f(x)滿足f(x-1)=2x+3a,且f(a)=7.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值為2,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.把一個(gè)半徑為R的實(shí)心鐵球熔化鑄成兩個(gè)小球(不計(jì)損耗),兩個(gè)小球的半徑之比為1:2,則其中較小球半徑為( 。
A.$\frac{1}{3}$RB.$\frac{\root{3}{3}}{3}$RC.$\frac{\root{3}{25}}{5}$RD.$\frac{\sqrt{3}}{3}$R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合A={m∈Z|m≤-3或m≥2},B={n∈N|-1≤n<3},則(∁ZA)∩B=( 。
A.{0,1,2}B.{-1,0,1}C.{0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直線l與圓C:x2+y2+2x-4y+a=0相交于A、B兩點(diǎn),弦AB的中點(diǎn)為M(0,1).
(1)求實(shí)數(shù)a的取值范圍以及直線l的方程;
(2)若圓C上存在動(dòng)點(diǎn)N使CN=2MN成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案