分析 (1)利用已知可求a=b,c=$\frac{a}{2}$,利用余弦定理即可得解cosA的值.
(2)利用已知可求a2=2$\sqrt{6}$c,進(jìn)而利用勾股定理可得c2-2$\sqrt{6}$c+6=0,解得c的值,利用直角三角形的面積公式即可計算得解.
解答 解:(1)在△ABC中,∵a2=2bc,a=b,
∴可得:c=$\frac{a}{2}$,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{a}^{2}+(\frac{a}{2})^{2}-{a}^{2}}{2×a×\frac{a}{2}}$=$\frac{1}{4}$.
(2)∵a2=2bc,$A=\frac{π}{2}$,且$b=\sqrt{6}$,
∴a2=2$\sqrt{6}$c,
∵由勾股定理可得:b2+c2=a2,可得:6+c2=a2=2$\sqrt{6}$c,整理可得:c2-2$\sqrt{6}$c+6=0,
∴解得:c=$\sqrt{6}$,
∴S△ABC=$\frac{1}{2}$bc=$\frac{1}{2}×\sqrt{6}×\sqrt{6}$=3.
點(diǎn)評 本題主要考查了余弦定理,勾股定理,直角三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2 013)>e2013f(0) | B. | f(2 013)<e2013f(0) | ||
C. | f(2 013)=e2013f(0) | D. | f(2 013)與e2013f(0)大小無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2-2x | B. | y=x3 | C. | y=lnx | D. | y=|x|+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (¬p)∧(¬q) | B. | p∧(¬q) | C. | p∧q | D. | (¬p)∨q |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com