集合M={x|2x≤4},N={x|x(1-x)>0},則∁MN=
 
考點:補集及其運算
專題:集合
分析:求出M與N中不等式的解集確定出M與N,根據(jù)全集M求出N的補集即可.
解答: 解:由M中不等式變形得:2x≤4=22,即x≤2,
∴M={x|x≤2},
由N中不等式變形得:x(x-1)<0,
解得:0<x<1,即N={x|0<x<1},
則∁MN={x|x≤0或1≤x≤2},
故答案為:{x|x≤0或1≤x≤2}
點評:此題考查了補集及其運算,熟練掌握補集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體三視圖如圖所示,則該幾何體的體積為( 。
A、
2
3
B、1
C、
4
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
2
(x2-2x-8)的單調(diào)遞增區(qū)間是
 
,單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log3
2
3
,b=log5
2
5
,c=log7
2
7
,則( 。
A、c>b>a
B、b>c>a
C、a>c>b
D、a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log0.5(x2-4)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2y的焦點為F.
(Ⅰ)設(shè)拋物線上任一點P(m,n).求證:以P為切點與拋物線相切的方程是mx=y+n;
(Ⅱ)若過動點M(x0,0)(x0≠0)的直線l與拋物線C相切,試判斷直線MF與直線l的位置關(guān)系,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將∠B=
π
3
,邊長為1的菱形ABCD沿對角線AC折成大小等于θ的二面角B-AC-D,若θ∈[
π
3
,
3
],M、N分別為AC、BD的中點,則下面的四種說法:
①AC⊥MN;
②DM與平面ABC所成的角是θ;
③線段MN的最大值是
3
4
,最小值是
3
4
;
④當θ=
π
2
時,BC與AD所成的角等于
π
2

其中正確的說法有
 
(填上所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在圓心角為直角的扇形OAB區(qū)域中,M、N分別為OA、OB的中點,在M、N兩點處各有一個通信基站,其信號的覆蓋范圍分別為以O(shè)A、OB為直徑的圓,在扇形OAB內(nèi)隨機取一點,則此點無信號的概率是( 。
A、1-
2
π
B、
1
2
-
1
π
C、
1
2
+
1
π
D、
1
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|log2x|+x-2的零點個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案