A. | $\frac{1}{3}$ | B. | $\frac{1}{64}$ | C. | $\frac{1}{128}$ | D. | $\frac{1}{256}$ |
分析 根據(jù)條件關(guān)系f($\frac{x}{3}$)=$\frac{1}{2}$f(x),f(1-x)=1-f(x),依次進(jìn)行遞推,得到當(dāng)$\frac{1}{2187}$≤x≤$\frac{2}{2187}$時(shí),f(x)=$\frac{1}{128}$,即可得到結(jié)論.
解答 解:∵(1)f(0)=0;(2)f($\frac{x}{3}$)=$\frac{1}{2}$f(x);(3)f(1-x)=1-f(x),
∴f(1)=1-f(0)=1,
f($\frac{1}{3}$)=$\frac{1}{2}$f(1)=$\frac{1}{2}$,f(1-$\frac{1}{3}$)=1-f($\frac{1}{3}$).即f($\frac{2}{3}$)=1-$\frac{1}{2}$=$\frac{1}{2}$,
f($\frac{1}{9}$)=$\frac{1}{2}$f($\frac{1}{3}$)=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$,f($\frac{2}{9}$)=$\frac{1}{2}$f($\frac{2}{3}$)=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$
f($\frac{1}{27}$)=$\frac{1}{2}$f($\frac{1}{9}$)=$\frac{1}{2}$×$\frac{1}{4}$=$\frac{1}{8}$,f($\frac{2}{27}$)=$\frac{1}{2}$f($\frac{2}{9}$)=$\frac{1}{2}$×$\frac{1}{4}$=$\frac{1}{8}$,
f($\frac{1}{81}$)=$\frac{1}{2}$f($\frac{1}{27}$)=$\frac{1}{2}$×$\frac{1}{8}$=$\frac{1}{16}$,f($\frac{2}{81}$)=$\frac{1}{2}$f($\frac{2}{27}$)=$\frac{1}{2}$×$\frac{1}{8}$=$\frac{1}{16}$,
f($\frac{1}{243}$)=$\frac{1}{2}$f($\frac{1}{81}$)=$\frac{1}{2}$×$\frac{1}{16}$=$\frac{1}{32}$,f($\frac{2}{243}$)=$\frac{1}{2}$f($\frac{2}{81}$)=$\frac{1}{2}$×$\frac{1}{16}$=$\frac{1}{32}$,
f($\frac{1}{729}$)=$\frac{1}{2}$f($\frac{1}{243}$)=$\frac{1}{2}$×$\frac{1}{32}$=$\frac{1}{64}$,f($\frac{2}{729}$)=$\frac{1}{2}$f($\frac{2}{243}$)=$\frac{1}{2}$×$\frac{1}{32}$=$\frac{1}{64}$,
f($\frac{1}{2187}$)=$\frac{1}{2}$f($\frac{1}{729}$)=$\frac{1}{2}$×$\frac{1}{64}$=$\frac{1}{128}$,f($\frac{2}{2187}$)=$\frac{1}{2}$f($\frac{2}{729}$)=$\frac{1}{2}$×$\frac{1}{64}$=$\frac{1}{128}$,
∵對(duì)于0≤x1≤x2≤1有f(x1)≤f(x2),
∴當(dāng)$\frac{1}{2187}$≤x≤$\frac{2}{2187}$時(shí),f(x)=$\frac{1}{128}$,
∵$\frac{1}{2016}$∈[$\frac{1}{2187}$,$\frac{2}{2187}$]時(shí),∴f($\frac{1}{2016}$)=$\frac{1}{128}$,
故選:C.
點(diǎn)評(píng) 本題考查了抽象函數(shù)的應(yīng)用,賦值計(jì)算給定的函數(shù)值,注意觀察轉(zhuǎn)化.考查學(xué)生的計(jì)算和推理能力,綜合性較強(qiáng)有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值為3,最小值為-1 | B. | 最大值為3,無(wú)最小值 | ||
C. | 最大值為7-2$\sqrt{7}$,無(wú)最小值 | D. | 既無(wú)最大值,又無(wú)最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{2}+{y^2}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$ | C. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{12}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com