分析 (1)利用向量共線定理可得k.
(2)an=$\frac{2kn}{5•{3}^{n}}$=$\frac{n}{{3}^{n}}$,利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:(1)∵$\overrightarrow{a}$∥$\overrightarrow$,∴-2k-(-5)×1=0,解得k=$\frac{5}{2}$.
(2)an=$\frac{2kn}{5•{3}^{n}}$=$\frac{n}{{3}^{n}}$,
∴Sn=a1+a2+a3+…+an=$\frac{1}{3}+\frac{2}{{3}^{2}}$+$\frac{3}{{3}^{3}}$…+$\frac{n}{{3}^{n}}$,
$\frac{1}{3}{S}_{n}$=$\frac{1}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{n-1}{{3}^{n}}$+$\frac{n}{{3}^{n+1}}$,
∴$\frac{2}{3}$Sn=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$-$\frac{n}{{3}^{n+1}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-$\frac{n}{{3}^{n+1}}$=$\frac{1}{2}$-$\frac{3+2n}{2×{3}^{n+1}}$,
∴Sn=$\frac{3}{4}$-$\frac{2n+3}{4×{3}^{n}}$.
點評 本題考查了等比數(shù)列的通項公式與求和公式、“錯位相減法”、向量共線定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\sqrt{x+4}-1(x>0)$ | B. | $\sqrt{x+4}-1(x>0)$ | C. | $-\sqrt{x+4}-1(x<-3)$ | D. | $\sqrt{x+4}-1(x<-3)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 垂直于同一條直線的兩直線平行 | |
B. | 垂直于同一條直線的兩直線垂直 | |
C. | 垂直于同一個平面的兩直線平行 | |
D. | 垂直于同一條直線的一條直線和平面平行 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4740 | B. | 4725 | C. | 12095 | D. | 12002 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com