18.在(2+x)(1+x)6的展開(kāi)式中,含x3項(xiàng)的系數(shù)為( 。
A.70B.60C.55D.50

分析 根據(jù)(1+x)6展開(kāi)式的通項(xiàng)公式,即可得出(2+x)(1+x)6的展開(kāi)式中含x3項(xiàng)的系數(shù).

解答 解:(1+x)6展開(kāi)式的通項(xiàng)公式為
Tr+1=${C}_{6}^{r}$•xr
所以(2+x)(1+x)6的展開(kāi)式中,含x3項(xiàng)的系數(shù)為:
2•${C}_{6}^{3}$+${C}_{6}^{2}$=55.
故選:C.

點(diǎn)評(píng) 本題主要考查了二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(文科學(xué)生做)已知函數(shù)f(x)=sinx-$\sqrt{3}$cosx.
(1)求f(x)在(0,π)上的單調(diào)遞增區(qū)間;
(2)若f(θ)=-$\frac{6}{5}$(0<θ<π),求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且c=2,C=60°,則$\frac{a+b}{sinA+sinB}$=$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=$\sqrt{2}$,AA1=2,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1
(Ⅰ)證明:CD⊥AB1
(Ⅱ)若OC=OA,求三棱錐B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)實(shí)數(shù)x、y滿足(x+2)2+y2=3,那么$\frac{y}{x}$的取值范圍是( 。
A.[-$\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{3}}}{3}}$]B.(-∞,-$\frac{{\sqrt{3}}}{3}$]∪[$\frac{{\sqrt{3}}}{3}$,+∞)C.[-$\sqrt{3}$,$\sqrt{3}}$]D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若A={x2,xy},B={1,y},且A=B,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,AB是半圓O的直徑,P是半圓$\widehat{AB}$上的任意一點(diǎn),M、N是AB上關(guān)于O點(diǎn)對(duì)稱(chēng)的兩點(diǎn),若|AB|=6,|MN|=4,則$\overrightarrow{PM}$•$\overrightarrow{PN}$=( 。
A.3B.5C.7D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某學(xué)校男子籃球運(yùn)動(dòng)隊(duì)由12名隊(duì)員組成,每個(gè)運(yùn)動(dòng)員身高均在180cm到210cm之間,一一測(cè)得身高后得到如下所示的頻數(shù)分布表:
身高(單位:cm)[180,185)[185,190)[190,195)[195,200)[200,205)[205,210]
人數(shù)233211
(I)試估計(jì)該運(yùn)動(dòng)隊(duì)身高的平均值;
(Ⅱ)從中選5人參加比賽,求身高在200cm以上的人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若sin(α-$\frac{7π}{4}$)=$\frac{1}{2}$,則cos($\frac{π}{4}$-α)=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案