18.過曲線y=$\frac{1}{x}$上一點(diǎn)P的切線的斜率為-4,則點(diǎn)P的坐標(biāo)為(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,2)或(-$\frac{1}{2}$,-2)C.(-$\frac{1}{2}$,2)D.($\frac{1}{2}$,2)

分析 求出原函數(shù)的導(dǎo)函數(shù),設(shè)出切點(diǎn)坐標(biāo),由切點(diǎn)處的導(dǎo)數(shù)等于-4求得答案.

解答 解:設(shè)切點(diǎn)為P(${x}_{0},\frac{1}{{x}_{0}}$),由y=$\frac{1}{x}$,得y′=-$\frac{1}{{x}^{2}}$,
∴$y′{|}_{x={x}_{0}}=-\frac{1}{{{x}_{0}}^{2}}$,由$-\frac{1}{{{x}_{0}}^{2}}=-4$,解得${x}_{0}=±\frac{1}{2}$.
∴點(diǎn)P的坐標(biāo)為($\frac{1}{2}$,2)或($-\frac{1}{2}$,-2).
故選:B.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,圓錐的軸截面PAB是等腰直角三角形,AB的中點(diǎn)為O,C是底面圓周上異于A,B的任意一點(diǎn),D為線段OC的中點(diǎn),E為母線PA上一點(diǎn),且AE=3EP.
(1)證明:ED∥平面PCB;
(2)若二面角A-OP-C的大小為90°,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,與函數(shù)y=$\frac{1}{\root{3}{x}}$定義域相同的函數(shù)為(  )
A.y=$\frac{1}{\sqrt{x}}$B.y=$\frac{lnx}{x}$C.y=xexD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一個(gè)棱柱共有12個(gè)頂點(diǎn),所有的側(cè)棱長的和為60,則該棱柱的側(cè)棱長為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC的面積為$\frac{1}{4}({a^2}+{b^2}-{c^2})$,則角C的度數(shù)是(  )
A.45B.60C.120D.135

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,以O(shè)x軸的非負(fù)半軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓交于A,B兩點(diǎn),已知A,B的縱坐標(biāo)分別為$\frac{\sqrt{5}}{5}$,$\frac{3\sqrt{10}}{10}$
(1)求α-β;
(2)求cos(2α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在等差數(shù)列{an}中,若a1+a3+a5=3,則a2+a4等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)到直線x-y+3$\sqrt{2}$=0的距離為5,且橢圓C的一個(gè)長軸端點(diǎn)與一個(gè)短軸端點(diǎn)間的距離為$\sqrt{10}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)給出定點(diǎn)Q($\frac{{6\sqrt{5}}}{5}$,0),對于橢圓C的任意一條過Q的弦AB,$\frac{1}{{{{|{QA}|}^2}}}$+$\frac{1}{{{{|{QB}|}^2}}}$是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={1,2,3},B={1,m},A∩B=B,則實(shí)數(shù)m的值為( 。
A.2B.3C.1或2或3D.2或3

查看答案和解析>>

同步練習(xí)冊答案