已知函數(shù)的圖象如圖,直線在原點(diǎn)處與函數(shù)圖象相切,且此切線與函數(shù)圖象所圍成的區(qū)域(陰影)面積為.
(1)求的解析式;
(2)若常數(shù),求函數(shù)在區(qū)間上的最大值.
(1);
(2)當(dāng)時(shí),;當(dāng)時(shí),.
解析試題分析:(1)由條件知,,,代入可得、.再用定積分表示出所圍成的區(qū)域(陰影)面積,由面積為解得,從而得到的解析式;(2)由(1)知,再列出,的取值變化情況,又,結(jié)合圖像即可得當(dāng)時(shí),;當(dāng)時(shí),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù),其中.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),其中.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
函數(shù),數(shù)列,滿足0<<1, ,數(shù)列滿足,
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)(其中),且方程的兩個(gè)根分別為、.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
試題解析:(1)由得, 2分
.由得, 4分
∴,則易知圖中所圍成的區(qū)域(陰影)面積為
從而得,∴. 8分
(2)由(1)知.
的取值變化情況如下: 2 單調(diào)
遞增極大值
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當(dāng)時(shí),不等式恒成立.
(1)當(dāng)時(shí)判斷的單調(diào)性;
(2)若在其定義域?yàn)樵龊瘮?shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若,總有成立,求實(shí)數(shù)的取值范圍.
(1)試求函數(shù)的單調(diào)區(qū)間和極值;
(2)若 直線與曲線相交于不同兩點(diǎn),若 試證明.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:0<<<1;
(Ⅲ)若且<,則當(dāng)n≥2時(shí),求證:>
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)點(diǎn)為函數(shù)的圖象上任意一點(diǎn),若曲線在點(diǎn)處的切線的斜率恒大于,
求的取值范圍.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)若函數(shù)在[1,4]上是減函數(shù),求實(shí)數(shù)的取值范圍.
(1)求a和b的值; (2)證明:.
(1)當(dāng)且曲線過原點(diǎn)時(shí),求的解析式;
(2)若在無極值點(diǎn),求的取值范圍.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)