已知關(guān)于x的方程log
1
3
(2x-1)-k=0的解在區(qū)間[2,5]上,那么實數(shù)k的取值范圍是
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系以及方程和函數(shù)之間的關(guān)系即可.
解答: 解:由log
1
3
(2x-1)-k=0得log
1
3
(2x-1)=k,
設(shè)函數(shù)f(x)=log
1
3
(2x-1),
則函數(shù)f(x)在區(qū)間[2,5]單調(diào)遞減,
則f(2)≥f(x)≥f(5),
log
1
3
3≥f(x)≥log
1
3
9,
即-1≥f(x)≥-2,
即-2≤k≤-1,
故答案為:[-2,-1]
點評:本題主要考查復(fù)合函數(shù)單調(diào)性的判斷,根據(jù)復(fù)合函數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的一個焦點F(4,0)到漸近線的距離為2,則雙曲線的離心率是( 。
A、
3
B、
2
3
3
C、
4
3
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理) 已知空間兩點A(1,2,-1),B(2,0,2).x軸上存在一點P,使得PA=PB,則P點坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(lg9-1)2
的值等于(  )
A、lg9-1
B、1-lg9
C、8
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=xa的圖象經(jīng)過點(2,
1
2
),則該函數(shù)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈(0,6),b∈(0,6).
(Ⅰ)求|a-b|≤1的概率;
(Ⅱ)以a,b作為直角三角形兩直角邊的邊長,則斜邊長小于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=Z,集合M={1,2},P={-2,-1,0,1,2},則P∩∁UM=(  )
A、{0}B、{1}
C、{-1,-2,0}D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(1+i)(2-i)(i為虛數(shù)單位),則|z|=( 。
A、
5
B、
2
C、
10
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角函數(shù)f(x)=Asin(ωx+φ)+b同時滿足以下三個條件:
①定義域為R;
②對任意實數(shù)x都有f(x)≤f(3);
③f(x+2)=
1
2
+
f(x)-f2(x)
,
則f(x)的單調(diào)區(qū)間為( 。
A、[4k-1,4k+3],k∈Z
B、[4k+1,4k+3],k∈Z
C、[8k-2,8k+2],k∈Z
D、[8k+2,8k+6],k∈Z

查看答案和解析>>

同步練習(xí)冊答案