5.下列選項(xiàng)中敘述錯(cuò)誤的是( 。
A.命題“若x=0,則x2-x=0”的逆否命題為真命題
B.若命題P:?n∈N,n2>2n,則¬P:?n∈N,n2≤2n
C.若“p∧q”為假命題,則“p∨q”為真命題
D.命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n=0”

分析 判斷原命題的真假,結(jié)合互為逆否的兩個(gè)命題真假性相同,可判斷A;寫出原命題的否定,可判斷B;根據(jù)復(fù)合命題真假判斷的真值表,可判斷C;寫出原命題的否命題,可判斷D.

解答 解:命題“若x=0,則x2-x=0”為真命題,故其逆否命題為真命題,即A正確;
若命題P:?n∈N,n2>2n,則¬P:?n∈N,n2≤2n,即B正確;
若“p∧q”為假命題,則“p∨q”真假性不能確定,即C錯(cuò)誤;
命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n=0”,即D正確;
故選:C.

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,命題的否定,復(fù)合命題等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某幾何體的三視圖如圖所示,其中三個(gè)圖中的四邊形均為邊長(zhǎng)為1的正方形,則此幾何體的表面積可以是( 。
A.3B.6C.3+$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖所示框圖運(yùn)行程序,輸出的s等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是(  )
A.f(x)=lg$\frac{x-1}{x+1}$B.f(x)=exC.f(x)=$\frac{1}{{x}^{3}}$D.f(x)=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$\overrightarrow a=(\sqrt{3}sinx-cosx,1)$,$\overrightarrow b=(cosx,m)$,函數(shù)f(x)=$\vec a•\vec b$(m∈R)的圖象過(guò)點(diǎn)M($\frac{π}{12}$,0).
(Ⅰ)若x∈[0,π],求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c.若ccosB+bcosC=2acosB,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.直三棱柱A1B1C1-ABC,$∠ACB=\frac{π}{2},AC=BC=2,C{C_1}=2\sqrt{2}$,E,F(xiàn),H為AC,B1C1,BB1的中點(diǎn),
(1)證明:EF∥平面AA1B1B;
(2)求異面直線EF與C1H所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某市電視臺(tái)在因特網(wǎng)上征集電視節(jié)目的現(xiàn)場(chǎng)參與觀眾,報(bào)名的共有12000人,分別來(lái)自4個(gè)城區(qū),其中東城區(qū)2400人,西城區(qū)4600人,南城區(qū)3800人,北城區(qū)1200人,從中抽取60人參加現(xiàn)場(chǎng)節(jié)目,應(yīng)當(dāng)如何抽取?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知把函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x的圖象向右平移$\frac{π}{12}$個(gè)單位,再把橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,再向下平移$\frac{1}{2}$個(gè)單位,得到函數(shù)g(x),則函數(shù)g(x)從原點(diǎn)起與x軸的正半軸,直線x=$\frac{π}{2}$圍成的面積為(  )
A.2B.$\frac{π}{2}$C.1D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知:f(x)=2x2+bx+c.
(1)若f(x)在(-∞,1]上單調(diào)遞減,求b的取值范圍;
(2)對(duì)任意實(shí)數(shù)x∈[-1,1],f(x)的最大值與最小值之差為g(b),求g(b).

查看答案和解析>>

同步練習(xí)冊(cè)答案