分析 (Ⅰ)利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),利用輔助角公式化為一個(gè)角的正弦函數(shù),根據(jù)正弦函數(shù)的對(duì)稱中心橫坐標(biāo)為kπ,得到函數(shù)的對(duì)稱中心的坐標(biāo),單調(diào)遞增區(qū)間[2kπ-$\frac{π}{2}$,$\frac{π}{2}$+2kπ],求出x的范圍,可得出函數(shù)的單調(diào)遞增區(qū)間.
(Ⅱ)由(Ⅰ)得到A=$\frac{π}{4}$,由余弦定理,得到bc的范圍,再由三角形的面積公式得到面積的最大值.
解答 (I)$f(x)=2{sin^2}x+2sinxcosx=1-cos2x+sin2x=\sqrt{2}sin(2x-\frac{π}{4})+1$,
令$sin(2x-\frac{π}{4})=0$,有$2x-\frac{π}{4}=kπ$,$x=\frac{kπ}{2}+\frac{π}{8}(k∈Z)$,
所以f(x)的對(duì)稱中心是$(\frac{kπ}{2}+\frac{π}{8},1)(k∈Z)$
令$-\frac{π}{2}+kπ≤2x-\frac{π}{4}≤\frac{π}{2}+kπ$,
得:$-\frac{π}{8}+\frac{kπ}{2}≤x≤\frac{3π}{8}+\frac{kπ}{2}(k∈Z)$,
所以f(x)的遞增區(qū)間是$[{-\frac{π}{8}+\frac{kπ}{2},\frac{3π}{8}+\frac{kπ}{2}}](k∈Z)$
(Ⅱ)由(I)得:$sin(2A-\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,
因?yàn)锳為銳角,所以$2A-\frac{π}{4}=\frac{π}{4}$,即$A=\frac{π}{4}$,
又a2=b2+c2-2bccosA,
所以$4≥2bc-\sqrt{2}bc$,即$bc≤\frac{4}{{2-\sqrt{2}}}=2(2+\sqrt{2})$,
所以${S_{△ABC}}=\frac{1}{2}bcsinA≤\frac{1}{2}×2(2+\sqrt{2})×\frac{{\sqrt{2}}}{2}=\sqrt{2}+1$,
當(dāng)且僅當(dāng)b=c取等號(hào),
故該三角形面積的,最大值為$\sqrt{2}+1$
點(diǎn)評(píng) 本題主要考查三角函數(shù)的對(duì)稱中心和單調(diào)區(qū)間,主要涉及兩角和與差的正弦函數(shù)公式,正弦函數(shù)的單調(diào)性,輔助角公式,正弦定理,余弦定理等,熟練掌握公式及定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{1}{3}$或-$\frac{5}{3}$ | D. | -$\frac{1}{3}$或$\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2cm | B. | 4cm | C. | 6cm | D. | 8cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com