8.已知cos(θ-$\frac{π}{4}$)=$\frac{1}{3}$,$\frac{π}{2}$<θ<π,則sin2θ=$-\frac{7}{9}$,tanθ=$-\frac{9+4\sqrt{2}}{7}$.

分析 由已知結(jié)合誘導(dǎo)公式及倍角公式求得sin2θ,化弦為切求得tanθ.

解答 解:∵cos(θ-$\frac{π}{4}$)=$\frac{1}{3}$,
∴sin2θ=cos($\frac{π}{2}-2θ$)=cos2($θ-\frac{π}{4}$)
=2$co{s}^{2}(θ-\frac{π}{4})-1$=$2×\frac{1}{9}-1=-\frac{7}{9}$;
由$sin2θ=\frac{2tanθ}{1+ta{n}^{2}θ}=-\frac{7}{9}$,
得7tan2θ+18tanθ+7=0,
∵$\frac{π}{2}$<θ<π,
∴tanθ=$\frac{-18-8\sqrt{2}}{14}=-\frac{9+4\sqrt{2}}{7}$.
故答案為:$-\frac{7}{9}$,$-\frac{{9+4\sqrt{2}}}{7}$.

點評 本題考查三角函數(shù)的化簡求值,考查了同角三角函數(shù)基本關(guān)系式的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓的圓心在直線l:y=2x-1上,且與兩坐標軸均相切,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將一枚均勻的硬幣連擲4次,計算:
(1)4次都是正面朝上的概率;
(2)至少有一次正面朝上的概率;
(3)至多有一次正面朝上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知單位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夾角為60°,則$\overrightarrow{e_1}$•$\overrightarrow{e_2}$=$\frac{1}{2}$,|${\overrightarrow{e_1}$-λ$\overrightarrow{e_2}}$|(λ∈R)的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{xn}中,x1=10,xn=log2(xn-1-2),則數(shù)列{xn}的第2項是3所有項和T=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.《九章算術(shù)》中方田篇有如下問題:“今有田廣十五步,從十六步,問為田幾何?答曰:一畝.”其意思:“現(xiàn)有一塊田,寬十五步,長十六步,問這塊田的面積是多少?答:一畝.”如果百畝為一頃,今有田寬2016步,長2000步,則該田有( 。
A.167頃B.168頃C.169頃D.673頃

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.從裝有3只紅球,2只白球和2只黑球的袋中逐一取球,已知每只球披抽取的可能性相同.
(1)若抽取后又放回,抽3次.
①求恰有2次為紅球的概率;
②求抽到紅球次數(shù)X的數(shù)學(xué)期望;
(2)若抽取后不放回,抽完紅球所需次數(shù)為Y,求Y的分布列及數(shù)學(xué)期望E(Y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè){an}是有窮數(shù)列,且項數(shù)n≥2.定義一個變換Ψ:將數(shù)列a1,a2,a3,…,an變成a3,a4,…,an,an+1,其中an+1=a1+a2是變換所產(chǎn)生的一項.從數(shù)列1,2,3…,22016開始,反復(fù)實施變換Ψ,直到只剩下一項而不能變換為止,則變換所產(chǎn)生的所有項的和為( 。
A.(22015+240312016B.22015+24031C.2016(22015+24031D.2016(22016+24032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知四邊形ABCD中,∠B=∠D=90°,AD=CD=$\sqrt{6}$,∠BAC=60°,E為AC的中點;現(xiàn)將△ACD沿對角線AC折起,使點D在平面ABC上的射影H落在BC上.

(1)求證:AB⊥平面BCD;
(2)求證:CD⊥平面ABD;
(3)求三棱錐D-ABE的體積.

查看答案和解析>>

同步練習(xí)冊答案