13.《九章算術》中方田篇有如下問題:“今有田廣十五步,從十六步,問為田幾何?答曰:一畝.”其意思:“現(xiàn)有一塊田,寬十五步,長十六步,問這塊田的面積是多少?答:一畝.”如果百畝為一頃,今有田寬2016步,長2000步,則該田有(  )
A.167頃B.168頃C.169頃D.673頃

分析 由題意可得:該田有$\frac{2016×2000}{16×15}$畝,進而得出該田的頃數(shù).

解答 解:由題意可得:該田有$\frac{2016×2000}{16×15×100}$=168頃.
故選:B.

點評 本題考查了土地面積的一種換算關系、,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.某校的象棋興趣班有高一年級10人,高二年級15人,高三年級5人,用分層抽樣的方法從這個興趣班中抽取6人進行集中訓練,然后從這6人中隨機抽取2人代表學校參加本區(qū)內校際高中生象棋大賽,則這2人中恰好有高二、高三各一人的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在某項體能測試中,跑1km時間不超過4min為優(yōu)秀,某同學跑1km所花費的時間X是離散型隨機變量嗎?如果我們只關心該同學是否能夠取得優(yōu)秀成績,應該如何定義隨機變量?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知$\overrightarrow a$,$\overrightarrow b$為單位向量,|$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{2}$|$\overrightarrow a$-$\overrightarrow b$|,則$\overrightarrow a$在$\overrightarrow a$+$\overrightarrow b$的投影為(  )
A.$\frac{1}{3}$B.-$\frac{{2\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知cos(θ-$\frac{π}{4}$)=$\frac{1}{3}$,$\frac{π}{2}$<θ<π,則sin2θ=$-\frac{7}{9}$,tanθ=$-\frac{9+4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.《算法通宗》是我國古代內容豐富的數(shù)學名書,書中有如下問題:“遠望巍巍塔七層,紅燈向下倍加增,共燈三百八十一,請問塔頂幾盞燈?”其意思為“一座塔共七層,從塔頂至塔底,每層燈的數(shù)目都是上一層的2倍,已知這座塔共有381盞燈,請問塔頂有幾盞燈?”
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別是F1、F2,點P在其上一點,雙曲線的離心率是2,且∠F1PF2=90°,若△F1PF2的面積為3,則雙曲線的實軸長為(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知cosαcosβ=-1,求sin(α+β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,P為線段AD1上的動點,
(1)當P為AD1中點時,求證:PD⊥平面ABC1D1
(2)求證:無論P在何處,三棱錐D-PBC1的體積恒為定值;并求出這個定值.

查看答案和解析>>

同步練習冊答案