【題目】已知函數(shù)f(x)=
(1)求證:f(x)在[﹣3,﹣2]上是增函數(shù);
(2)求f(x)得最大值和最小值.
【答案】
(1)解:∵函數(shù)f(x)=
設(shè)x1<x2∈[﹣3,﹣2],
∴x1﹣x2<0,x1+1<0,x2+1<0,
∴ <0,
∴f(x1)<f(x2),
∴f(x)在[﹣3,﹣2]上是增函數(shù)
(2)解:由(1)中f(x)在[﹣3,﹣2]上是增函數(shù),
∴當(dāng)x=﹣3時(shí),f(x)min=f(﹣3)=3,
當(dāng)x=﹣2時(shí),f(x)max=f(﹣2)=4.
【解析】(1)設(shè)x1<x2∈[﹣3,﹣2],作差判斷f(x1)<f(x2),可得:f(x)在[﹣3,﹣2]上是增函數(shù);(2)結(jié)合(1)中函數(shù)的單調(diào)性,可得f(x)得最大值和最小值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(其中A>0,||< ,ω>0)的圖象如圖所示,
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)+ cos2x﹣ sin2x﹣k=0在[0, ]上只有一解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.
(1)若A是空集,求a的取值范圍;
(2)若A中只有一個(gè)元素,求a的值,并把這個(gè)元素寫出來.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(其中a實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=5時(shí),求函數(shù)y=g(x)在點(diǎn)(1,e)處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若存在x1 , x2∈[e﹣1 , e](x1≠x2),使方程g(x)=2exf(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(Ⅰ) 寫出直線的普通方程和曲線C 的直角坐標(biāo)方程;
(Ⅱ) 過點(diǎn)且與直線平行的直線交曲線C于, 兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足條件,且函數(shù)是偶函數(shù),當(dāng)時(shí), ;當(dāng)時(shí), 的最小值為,則=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)求ξ的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢驗(yàn)學(xué)習(xí)情況,某培訓(xùn)機(jī)構(gòu)于近期舉辦一場競賽活動(dòng),分別從甲、乙兩班各抽取10名學(xué)員的成績進(jìn)行統(tǒng)計(jì)分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學(xué)員”.
(1)分別求甲、乙兩班學(xué)員成績的平均分(結(jié)果保留一位小數(shù));
(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com