【題目】若函數(shù)的最大值為,則實(shí)數(shù)的取值范圍是()
A. B. C. D.
【答案】C
【解析】
討論x<0時(shí),運(yùn)用基本不等式可得最大值f(﹣1)=a,求得x>0的函數(shù)的導(dǎo)數(shù),討論a=0顯然成立;a>0,求得單調(diào)性,可得最大值,可令最大值小于等于a,解不等式可得所求范圍.
當(dāng)x<0時(shí),f(x)=x++a+2≤﹣2+a+2=a,
當(dāng)且僅當(dāng)x=﹣1,即f(﹣1)取得最大值a,
當(dāng)x>0時(shí),f(x)=alnx﹣x2,導(dǎo)數(shù)為f′(x)=﹣2x,
若a=0時(shí),f(x)=﹣x2<0,顯然成立;
若a>0,則可得f(x)在(0,)遞增,(,+∞)遞減,
可得f()取得極大值,且為最大值aln﹣,
由題意可得aln﹣≤a,
解得0<a≤2e3,
綜上可得0≤a≤2e3,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在時(shí)取得極值,求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi)元.
(1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)的圖象與軸的交點(diǎn)個(gè)數(shù)不少于2個(gè),則實(shí)數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場準(zhǔn)備在今年的“五一假”期間對(duì)顧客舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了兩種抽獎(jiǎng)方案,方案的中獎(jiǎng)率為,中獎(jiǎng)可以獲得分;方案的中獎(jiǎng)率為,中獎(jiǎng)可以獲得分;未中獎(jiǎng)則不得分,每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,并憑分?jǐn)?shù)兌換獎(jiǎng)品,
(1)若顧客甲選擇方案抽獎(jiǎng),顧客乙選擇方案抽獎(jiǎng),記他們的累計(jì)得分為,若的概率為,求
(2)若顧客甲、顧客乙兩人都選擇方案或都選擇方案進(jìn)行抽獎(jiǎng),問:他們選擇何種方案抽獎(jiǎng),累計(jì)得分的均值較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處切線的斜率為,求此切線方程;
(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1) 求實(shí)數(shù)的值;
(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;
(3) 若方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com