分析 求出函數(shù)的導(dǎo)數(shù),分離參數(shù)得到$p≥\frac{2x}{{{x^2}+1}}=\frac{2}{{x+\frac{1}{x}}}$恒成立,結(jié)合基本不等式的性質(zhì)求出p的范圍即可.
解答 解:∵${f^'}(x)=\frac{{p{x^2}-2x+p}}{x^2}$,
要使f(x)為單調(diào)增函數(shù),須f′(x)≥0恒成立,
即px2-2x+p≥0恒成立,
即$p≥\frac{2x}{{{x^2}+1}}=\frac{2}{{x+\frac{1}{x}}}$恒成立,
又$\frac{2}{{x+\frac{1}{x}}}≤1$,
故當(dāng)p≥1時,f(x)在(0,+∞)為單調(diào)增函數(shù),
故答案為:[1,+∞).
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)題知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|-2≤x≤3} | C. | {x|-1<x<1} | D. | {x|-2≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 4π | C. | 6π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 1+x | C. | 1+x+x2 | D. | 1+x+x2+x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com