20.某校高一年級3個班有10名學生在全國英語能力大賽中獲獎,學生來源人數(shù)如表:
班別高一(1)班高一(2)班高一(3)班
人數(shù)361
若要求從10位同學中選出兩位同學介紹學習經驗,設其中來自高一(1)班的人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望E(ξ).

分析 隨機變量ξ的取值可能為0,1,2.利用“超幾何分布”的概率計算公式及其分布列、數(shù)學期望即可得出.

解答 解:隨機變量ξ的取值可能為0,1,2.
P(ξ=0)=$\frac{{∁}_{7}^{2}}{{C}_{10}^{2}}$=$\frac{7}{15}$,P(ξ=1)=$\frac{{∁}_{3}^{1}{∁}_{7}^{1}}{{∁}_{10}^{2}}$=$\frac{7}{15}$,P(ξ=2)=$\frac{{∁}_{3}^{2}}{{∁}_{10}^{2}}$=$\frac{1}{15}$.

ξ012
P$\frac{7}{15}$$\frac{7}{15}$$\frac{1}{15}$
∴E(ξ)=$0×\frac{7}{15}$+1×$\frac{7}{15}$+2×$\frac{1}{15}$=$\frac{3}{5}$.
答:數(shù)學期望為$\frac{3}{5}$.

點評 本題考查了“超幾何分布”的概率計算公式及其分布列、數(shù)學期望,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知下列選項,其中錯誤的是( 。
①過圓(x-1)2+(y-2)2=4外一點M(3,1),且與圓相切的直線方程為3x-4y-5=0;
②方程Ax2+By2=1(A>0,B>0)表示橢圓方程;
③平面內到點F1(0,4),F(xiàn)2(0,-4)距離之差的絕對值等于8的點的軌跡是雙曲線;
④方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(mn>0)表示焦點在x軸上的雙曲線.
A.①②③④B.①②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知冪函數(shù)f(x)=k•xa的圖象過點(3,$\sqrt{3}$),則k+a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若實數(shù)x,y滿足條件$\left\{\begin{array}{l}2-y≥0\\ x-3y+2≤0\\ 4x-5y+2≥0\end{array}\right.$,則目標函數(shù)z=x+2y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2cos($\frac{π}{2}$-x)sinx+(sinx+cosx)2
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)把y=f(x)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=g(x)的圖象,求$g(\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在等比數(shù)列{an}中,若公比q=2,S3=7,則S6的值為( 。
A.56B.58C.63D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點C是弧AB的中點,E是線段AC的中點,D是線段PB的中點,且PO=2,OB=1.
(1)試在PB上確定一點F,使得EF∥面COD,并說明理由;
(2)求點A到面COD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.集合A={x|f(x)=x},B={x|f(f(x))=x},則集合A與集合B之間的關系(  )
A.A⊆BB.B⊆AC.B?AD.A?B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.對數(shù)式log(a-2)(5-a)中實數(shù)a的取值范圍是( 。
A.(-∞,5)B.(2,5)C.(2,3)∪(3,5)D.(2,+∞)

查看答案和解析>>

同步練習冊答案