科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題
已知拋物線y2=8x的準(zhǔn)線與雙曲線-y2=1(m>0)交于A,B兩點,點F為拋物線的焦點,若△FAB為直角三角形,則雙曲線的離心率是( ).
A. B. C.2 D.2
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題
已知點P(x,y)是直線kx+y+4=0(k>0)上一動點,PA,PB是圓C:x2+y2-2y=0的兩條切線,A,B為切點,若四邊形PACB的最小面積是2,則k的值為( ).
A.4 B.3 C.2 D.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:填空題
已知雙曲線=1(a>0,b>0)的漸近線方程為y=±x,則它的離心率為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:填空題
已知直線y=a交拋物線y=x2于A,B兩點.若該拋物線上存在點C,使得∠ACB為直角,則a的取值范圍為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:填空題
設(shè)圓x2+y2=2的切線l與x軸正半軸、y軸正半軸分別交于點A,B,當(dāng)|AB|取最小值時,切線l的方程為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:填空題
設(shè)圓C的圓心與雙曲線=1(a>0)的右焦點重合,且該圓與此雙曲線的漸近線相切,若直線l:x-y=0被圓C截得的弦長等于2,則a的值為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題
已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題
設(shè)直線l:x-y+m=0與拋物線C:y2=4x交于不同兩點A,B,F 為拋物線的焦點.
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標(biāo)原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PM與QN相交于點T.求證:點T在橢圓C上.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題
已知直線l:y=x+,圓O:x2+y2=5,橢圓E:=1(a>b>0)的離心率e=,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com