相關(guān)習(xí)題
 0  208894  208902  208908  208912  208918  208920  208924  208930  208932  208938  208944  208948  208950  208954  208960  208962  208968  208972  208974  208978  208980  208984  208986  208988  208989  208990  208992  208993  208994  208996  208998  209002  209004  209008  209010  209014  209020  209022  209028  209032  209034  209038  209044  209050  209052  209058  209062  209064  209070  209074  209080  209088  266669 

科目: 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)為F1(0,-2
2
),F(xiàn)2(0,2
2
),且離心率e=
2
2
3
,求橢圓的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)x1,x2是方程2x2+4x-3=0的兩根
(1)求
1
x1
+
1
x2
的值;      
(2)求x12+x22的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知
a
=(1,x)  
b
=(2x+3,-x),x∈R
(1)若
a
b
,求x的值;
(2)若y=(
a
-
b
)•
b
,求y的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在Rt△AOB中,∠OAB=
π
6
,斜邊AB=4,Rt△AOC可以通過(guò)Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且∠BOC=90°,動(dòng)點(diǎn)D在斜邊AB上.
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)∠CDO最大時(shí)求三棱錐VA-CDO的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知A、B、C是直線l上的三點(diǎn),向量
OA
,
OB
OC
滿足
OA
=[f(x)+2f′(1)x]
OB
-lnx•
OC
,則函數(shù)y=f(x)的表達(dá)式為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)在(0,+∞)上單調(diào)遞減,且f(1)=0,則不等式xf(x)≥0的解集為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2x.
(I)證明:對(duì)任意x∈R,f(x)>2x-6恒成立;
(Ⅱ)解不等式f(x)≤|x-1|+|x-2|.

查看答案和解析>>

科目: 來(lái)源: 題型:

某商店每天(開始營(yíng)業(yè)時(shí))以每件20元的價(jià)格購(gòu)入甲商品若干(甲商品在商店的保鮮時(shí)間為10小時(shí),該商店的營(yíng)業(yè)時(shí)間也恰好為10小時(shí)),并開始以每件30元的價(jià)格出售,若前8小時(shí)內(nèi)所購(gòu)進(jìn)的甲商品沒(méi)有售完,則商店對(duì)沒(méi)賣出的甲商品將以每件10元的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把甲商品低價(jià)處理完畢,且處理完畢后,當(dāng)天不再購(gòu)進(jìn)甲商品).該商店統(tǒng)計(jì)了100天甲商品在每天的前8小時(shí)內(nèi)的銷售量,由于某種原因 銷售量頻數(shù)表中的部分?jǐn)?shù)據(jù)被污損而不能看清,制成如下表格(注:視頻率為概率).
前8小時(shí)內(nèi)的銷售量X(單位:件)3456
頻數(shù)2020xy
(Ⅰ)若某天商店購(gòu)進(jìn)甲商品5件,試求商店該天銷售甲商品獲取利潤(rùn)Y的分布列和方差;
(Ⅱ)若商店每天在購(gòu)進(jìn)5件甲商品時(shí)所獲得的平均利潤(rùn)比購(gòu)進(jìn)6件甲商品時(shí)所獲得的平均利潤(rùn)大,求x的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

若圓O半徑為r.AB為圓O的弦,O到AB的距離為d=
3
r
2
,則△ABC的面積S=
3
r2
4
.類比這個(gè)結(jié)論,得出一個(gè)立體幾何中的相應(yīng)結(jié)論并加以證明.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知在直三棱柱ABC-A1B1C1中,AB1⊥A1C,D為AB的中點(diǎn),且AB=4,AC=BC=3.
(1)求二面角A1-CD-B1的平面角的余弦值;
(2)求四面體CDA1B1與直三棱柱ABC-A1B1C1的體積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案