相關(guān)習(xí)題
 0  227776  227784  227790  227794  227800  227802  227806  227812  227814  227820  227826  227830  227832  227836  227842  227844  227850  227854  227856  227860  227862  227866  227868  227870  227871  227872  227874  227875  227876  227878  227880  227884  227886  227890  227892  227896  227902  227904  227910  227914  227916  227920  227926  227932  227934  227940  227944  227946  227952  227956  227962  227970  266669 

科目: 來源: 題型:選擇題

16.若集合A={x|2x+1>0},集合B={-3,-1,0,1,2},則A∩B等于( 。
A.{1,2}B.{0,1,2}C.(-1,3)D.{-1,0,1,2}

查看答案和解析>>

科目: 來源: 題型:選擇題

15.函數(shù)$f(x)=Asin(ωx+φ)+b(ω>0,|φ|<\frac{π}{2})$的圖象如下,則f(0)+f(1)+f(2)+…+f(2016)=( 。
A.504B.1008C.2016D.2017

查看答案和解析>>

科目: 來源: 題型:選擇題

14.△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,若$a=2,c=\sqrt{19}$,$tanA+tanB=\sqrt{3}-\sqrt{3}tanAtanB$,則△ABC的面積S△ABC=(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足z(2-i)=10+5i(i為虛數(shù)單位),則|z|=(  )
A.25B.10C.5D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.如圖所示,為了測量某湖泊兩側(cè)A,B間的距離,李寧同學(xué)首先選定了與A,B不共線的一點C,然后給出了三種測量方案:(△ABC的角A,B,C所對的邊分別記為a,b,c):
①測量A,C,b
②測量a,b,C
③測量A,B,a
則一定能確定A,B間距離的所有方案的個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)i是虛數(shù)單位,復(fù)數(shù)$z=1+\frac{1-i}{1+i}$在復(fù)平面上所表示的點為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)全集U=R,集合A={x|x(x-3)>0},則∁UA=(  )
A.[0,3]B.(0,3)C.(-∞,0)∪(3,+∞)D.(-∞,0]∪[3,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知f(x)是定義在[a,b]上的函數(shù),如果存在常數(shù)M>0,對區(qū)間[a,b]的任意劃分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}$|f(xi)-f(xi-1)|≤M恒成立,則稱f(x)為[a,b]上的“絕對差有界函數(shù)”,注:$\sum_{i=1}^{n}$ai=a1+a2+…+an
(1)證明函數(shù)f(x)=sinx+cosx在[-$\frac{π}{2}$,0]上是“絕對差有界函數(shù)”;
(2)記集合A={f(x)|存在常數(shù)k>0,對任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},證明集合A中的任意函數(shù)f(x)為“絕對差有界函數(shù)”.當(dāng)[a,b]=[1,2]時,判斷g(x)=$\sqrt{x}$是否在集合A中,如果在,請證明并求k的最小值;如果不在,請說明理由;
(3)證明函數(shù)f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x},0<x≤1}\\{0,x=0}\end{array}\right.$,不是[0,1]上的“絕對差有界函數(shù)”.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.若關(guān)于x的不等式x3-3x+3-$\frac{x}{{e}^{x}}$-a≤0有解,其中x≥-2,則實數(shù)a的最小值為( 。
A.1-$\frac{1}{e}$B.2-$\frac{2}{e}$C.$\frac{2}{e}$-1D.1+2e2

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知$f(α)=\frac{{cos(\frac{π}{2}+α)sin(\frac{3π}{2}-α)}}{cos(-π-α)tan(π-α)}$,則$f(-\frac{25π}{3})$的值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案