相關(guān)習(xí)題
 0  227919  227927  227933  227937  227943  227945  227949  227955  227957  227963  227969  227973  227975  227979  227985  227987  227993  227997  227999  228003  228005  228009  228011  228013  228014  228015  228017  228018  228019  228021  228023  228027  228029  228033  228035  228039  228045  228047  228053  228057  228059  228063  228069  228075  228077  228083  228087  228089  228095  228099  228105  228113  266669 

科目: 來(lái)源: 題型:解答題

1.按照如下的規(guī)律構(gòu)造數(shù)表:
第一行是:2;
第二行是:2+1,2+3:即3,5;
第三行是:3+1,3+3,5+1,5+3,即:4,6,6,8,

(即從第二行起將上一行的數(shù)的每一項(xiàng)各加1寫(xiě)出,再各項(xiàng)再加3寫(xiě)出),若第n行所有的項(xiàng)的和為an;
2
3 5
4 6 6 8
5 7 7 9 7 9 9 11

(1)求a3,a4,a5;
(2)試寫(xiě)出an+1與an的遞推關(guān)系,并據(jù)此求出數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Sn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+…+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$(n∈N*),求Sn和$\underset{lim}{n→∞}$Sn的值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.已知數(shù)列{an}滿足a1=1,a2=2,an+2-an=1+(-1)n,則數(shù)列{an}的前30項(xiàng)的和為255.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.設(shè)P是△ABC內(nèi)一點(diǎn),且$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{CP}$=$\overrightarrow{0}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,則$\overrightarrow{AD}$+$\overrightarrow{AP}$=( 。
A.$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AC}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.下列命題中,真命題是( 。
A.?x0∈R,使ex0<x0+1成立B.對(duì)?x∈R,使2x>x2成立
C.a+b=0的充要條件是$\frac{a}$=-1D.a>1,b>1是ab>1的充分條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.tan70°cos10°+$\sqrt{3}$sin10°tan70°-2sin50°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知數(shù)列{an}滿足:a1=1,an+1=$\frac{1}{2}$an+$\frac{n}{{2}^{n+1}}$${a}_{n}^{2}$(n∈N*).
(1)求最小的正實(shí)數(shù)M,使得對(duì)任意的n∈N*,恒有0<an≤M.
(2)求證:對(duì)任意的n∈N*,恒有$\frac{18}{5•{2}^{n}+8}$≤an≤${(\frac{3}{4})}^{n-1}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,斜率為-$\frac{1}{2}$的直線l于橢圓C1交于E,F(xiàn)兩點(diǎn),若點(diǎn)M(1,1)滿足$\overrightarrow{EM}$+$\overrightarrow{FM}$=$\overrightarrow{0}$,$\overrightarrow{{F}_{1}M}$$•\overrightarrow{{F}_{2}M}$=0.
(1)求橢圓C1的標(biāo)準(zhǔn)方程
(2)設(shè)O為坐標(biāo)原點(diǎn),若點(diǎn)A在橢圓C1上,點(diǎn)B在直線y=2上,以AB為直徑的圓經(jīng)過(guò)原點(diǎn),求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知數(shù)列{an}、{bn}滿足:an+1=an+1,bn+1=bn+$\frac{1}{2}{a}_{n}$,cn=${{a}_{n}}^{2}$-4bn,n∈N*
(1)若a1=1,b1=0,求數(shù)列{an}、{bn}的通項(xiàng)公式:
(2)證明:數(shù)列{cn}是等差數(shù)列:
(3)定義fn(x)=x2+anx+bn,證明:若存在K∈N*,使得ak、bk為整數(shù),且fk(x)有兩個(gè)整數(shù)零點(diǎn),則必有無(wú)窮多個(gè)fn(x)有兩個(gè)整數(shù)零點(diǎn):

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.為配合上海迪斯尼游園工作,某單位設(shè)計(jì)人數(shù)的數(shù)學(xué)模型(n∈N+):以f(n)=$\left\{\begin{array}{l}{200n+2000,n∈[1,8]}\\{360•{3}^{\frac{n-8}{12}}+3000,n∈[9,32]}\\{32400-720n,n∈[33,45]}\end{array}\right.$表示第n時(shí)進(jìn)入人數(shù),以g(n)=$\left\{\begin{array}{l}{0,n[1,18]}\\{500n-9000,n∈[19,32]}\\{8800,n∈[33,45]}\end{array}\right.$表示第n個(gè)時(shí)刻離開(kāi)園區(qū)的人數(shù);設(shè)定以15分鐘為一個(gè)計(jì)算單位,上午9點(diǎn)15分作為第1個(gè)計(jì)算人數(shù)單位,即n=1:9點(diǎn)30分作為第2個(gè)計(jì)算單位,即n=2;依此類推,把一天內(nèi)從上午9點(diǎn)到晚上8點(diǎn)15分分成45個(gè)計(jì)算單位:(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計(jì)算當(dāng)天14點(diǎn)到15點(diǎn)這一個(gè)小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)f(21)+f(22)+f(23)+f(24)、離開(kāi)園區(qū)的游客人數(shù)g(21)+g(22)+g(23)+g(24)各為多少?
(2)從13點(diǎn)45分(即n=19)開(kāi)始,有游客離開(kāi)園區(qū),請(qǐng)你求出這之后的園區(qū)內(nèi)游客總?cè)藬?shù)最多的時(shí)刻,并說(shuō)明理由:

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.已知四面體ABCD中,AB=CD=2,E、F分別為BC、AD的中點(diǎn),且異面直線AB與CD所成的角為$\frac{π}{3}$,則EF=1或$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案