相關(guān)習(xí)題
 0  227962  227970  227976  227980  227986  227988  227992  227998  228000  228006  228012  228016  228018  228022  228028  228030  228036  228040  228042  228046  228048  228052  228054  228056  228057  228058  228060  228061  228062  228064  228066  228070  228072  228076  228078  228082  228088  228090  228096  228100  228102  228106  228112  228118  228120  228126  228130  228132  228138  228142  228148  228156  266669 

科目: 來源: 題型:解答題

8.如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分別為AB,AC中點(diǎn).
(1)求證:AB⊥PE;
(2)求三棱錐P-BEC的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.在△ABC中,M1,M2分別是邊BC,AC的中點(diǎn),AM1與BM2相交于點(diǎn)G,BC的垂直平分線與AB交于點(diǎn)N,且$\overrightarrow{NG}$•$\overrightarrow{NC}$-$\overrightarrow{NG}$•$\overrightarrow{NB}$=$\frac{1}{6}$$\overrightarrow{BC}$2,則△ABC是(  )
A.銳角三角形B.鈍角三角形C.直角三角形D.任意三角形

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且Sn+an=2-$\frac{2}{{2}^{n}}$.
(Ⅰ)求a1,a2,a3,a4;
(Ⅱ)求數(shù)列{an}的通項an

查看答案和解析>>

科目: 來源: 題型:解答題

5.三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC,各棱長均為2,D,E,F(xiàn),G分別是棱AC,AA1,CC1,A1C1的中點(diǎn).
(Ⅰ)求證:平面B1FG∥平面BDE;
(Ⅱ)求三棱錐B1-BDE的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.如圖,在棱長為a(a>0)的正四面體ABCD中,點(diǎn)B1,C1,D1分別在棱AB,AC,AD上,且平面B1C1D1∥平面BCD,A1為△BCD內(nèi)一點(diǎn),記三棱錐A1-B1C1D1的體積V,設(shè)$\frac{A{D}_{1}}{AD}$=x,對于函數(shù)V=f(x),則( 。
A.當(dāng)x=$\frac{2}{3}$時,函數(shù)f(x)取到最大值
B.函數(shù)f(x)在($\frac{1}{2}$,1)上是減函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{1}{2}$對稱
D.存在x0,使得f(x0)$>\frac{1}{3}{V}_{A-BCD}$(其中VA-BCD為四面體ABCD的體積)

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x-a|.
(1)若不等式f(1)<1,a為整數(shù),求a的值;
(2)若對一切x∈(0,1],f(x)<1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在正三棱柱ABC-A1B1C1中,AB=AA1=1,DC=DC1,AE=ED,F(xiàn)為BB1上任意一點(diǎn),且FB1=3BF.
(Ⅰ)求證:EF∥平面ABC;
(Ⅱ)求該三棱柱的側(cè)面展開圖的對角線長;
(Ⅲ)三棱錐B1-ABC1的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖所示,四邊形ABCD為直角梯形,AB∥CD,AB⊥BC,△ABE為等邊三角形,且平面ABCD⊥平面ABE,CD=BC=$\frac{1}{2}$AB=1,點(diǎn)P為CE中點(diǎn).
(Ⅰ)求證:AB⊥DE;
(Ⅱ)求DE與平面ABCD所成角的大。
(Ⅲ)求三棱錐D-ABP的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0.
(1)當(dāng)a=2時,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.如圖,已知平面α∩平面β=l,α⊥β.A、B是直線l上的兩點(diǎn),C、D是平面β內(nèi)的兩點(diǎn),且DA⊥l,CB⊥l,DA=4,AB=6,CB=8.P是平面α上的一動點(diǎn),且有∠APD=∠BPC,則四棱錐P-ABCD體積的最大值是( 。
A.48B.16C.$24\sqrt{3}$D.144

查看答案和解析>>

同步練習(xí)冊答案