相關(guān)習(xí)題
 0  227963  227971  227977  227981  227987  227989  227993  227999  228001  228007  228013  228017  228019  228023  228029  228031  228037  228041  228043  228047  228049  228053  228055  228057  228058  228059  228061  228062  228063  228065  228067  228071  228073  228077  228079  228083  228089  228091  228097  228101  228103  228107  228113  228119  228121  228127  228131  228133  228139  228143  228149  228157  266669 

科目: 來源: 題型:解答題

18.用分析法證明:設(shè)a,b為實(shí)數(shù),求證$\sqrt{{a}^{2}+^{2}}$≥$\frac{\sqrt{2}}{2}$(a+b)

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若AB=CB=1,${A_1}C=\frac{{\sqrt{6}}}{2}$,求三棱錐A-A1BC的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D-BEF的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在四面體ABCD中,CD=CB,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn).
(Ⅰ)求證:平面ABD⊥平面EFC;
(Ⅱ)當(dāng)AD=CD=BD=1,且EF⊥CF時(shí),求三棱錐C-ABD的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若點(diǎn)P在拋物線y=x2上,點(diǎn)Q(0,3),則|PQ|的最小值是( 。
A.$\frac{\sqrt{13}}{2}$B.$\frac{\sqrt{11}}{2}$C.3D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

13.?dāng)?shù)列{an}的通項(xiàng)公式為an=n2-kn,若對一切的n∈N*不等式an≥a3,則實(shí)數(shù)k的取值范圍[5,7].

查看答案和解析>>

科目: 來源: 題型:解答題

12.四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,AD=PD,E,F(xiàn)分別為CD,PB的中點(diǎn).
(1)求證:EF⊥平面PAB;
(2)設(shè)AB=$\sqrt{2}$BC=$\sqrt{2}$,求三棱錐P-AEF的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在四棱錐O-ABCD中,底面ABCD是邊長為2的正方形,側(cè)棱OB⊥底面ABCD,且側(cè)棱OB的長是2,點(diǎn)E,F(xiàn),G分別是AB,OD,BC的中點(diǎn).
(Ⅰ)證明:EF∥平面BOC;
(Ⅱ)證明:OD⊥平面EFG;
(Ⅲ)求三棱錐G-EOF的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖1,在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點(diǎn),且AB=EF=2,CD=6,M為BC中點(diǎn),現(xiàn)將梯形BEFC沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖2所示,N是CD上一點(diǎn),且$CN=\frac{1}{2}ND$.
(Ⅰ)求證:MN∥平面ADFE;
(Ⅱ)求三棱錐F-AMN的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知點(diǎn)A是拋物線C:x2=2py(p>0)上一點(diǎn),O為坐標(biāo)原點(diǎn),若以點(diǎn)M(0,8)為圓心,|OA|的長為半徑的圓交拋物線C于A,B兩點(diǎn),且△ABO為等邊三角形,則p的值是( 。
A.$\frac{3}{8}$B.2C.6D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案