相關(guān)習(xí)題
 0  228205  228213  228219  228223  228229  228231  228235  228241  228243  228249  228255  228259  228261  228265  228271  228273  228279  228283  228285  228289  228291  228295  228297  228299  228300  228301  228303  228304  228305  228307  228309  228313  228315  228319  228321  228325  228331  228333  228339  228343  228345  228349  228355  228361  228363  228369  228373  228375  228381  228385  228391  228399  266669 

科目: 來源: 題型:選擇題

17.已知雙曲線M:x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點分別為F1,F(xiàn)2,過點F1與雙曲線的一條漸近線平行的直線與另一條漸近線交于點P,若點P在以原點為圓心,雙曲線M的虛軸長為半徑的圓內(nèi),則b2的取值范圍是( 。
A.(7+4$\sqrt{3}$,+∞)B.(7-4$\sqrt{3}$,+∞)C.(7-4$\sqrt{3}$,7+4$\sqrt{3}$)D.(0,7-4$\sqrt{3}$)∪(7+4$\sqrt{3}$,+∞)

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知雙曲線為$\frac{x^2}{16}-\frac{y^2}{9}=1$,則雙曲線的右焦點到其漸近線的距離為3.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知F1、F2分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點,過點F1的直線與雙曲線C的左、右兩支分別交于P、Q兩點,|F1P|、|F2P|、|F1Q|成等差數(shù)列,且∠F1PF2=120°,則雙曲線C的離心率是( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)A(-3,0),B(3,0),若直線y=-$\frac{3\sqrt{5}}{10}$(x-5)上存在一點P滿足|PA|-|PB|=4,則點P到z軸的距離為(  )
A.$\frac{3\sqrt{5}}{4}$B.$\frac{5\sqrt{5}}{3}$C.$\frac{3\sqrt{5}}{4}$或$\frac{3\sqrt{5}}{2}$D.$\frac{5\sqrt{5}}{3}$或$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一個焦點F作雙曲線的一條漸近線的垂線,若垂線的延長線與y軸的交點坐標(biāo)為$(0\;,\;\;\frac{c}{2})$,則此雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.對于函數(shù)f(x),g(x),記集合Df>g={x|f(x)>g(x)}.
(1)設(shè)f(x)=2|x|,g(x)=x+3,求Df>g;
(2)設(shè)f1(x)=x-1,${f_2}(x)={(\frac{1}{3})^x}+a•{3^x}+1$,h(x)=0,如果${D_{{f_1}>h}}∪{D_{{f_2}>h}}=R$.求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.設(shè)不等式組$\left\{\begin{array}{l}x-y≤0\\ x+y≤4\\ x≥1\end{array}\right.$表示的平面區(qū)域為M,若直線l:y=k(x+2)上存在區(qū)域M內(nèi)的點,則k的取值范圍是$[\frac{1}{3},\;1]$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x)滿足f(x-1)=f(1-x),且x≥0時,f(x)=2|x-m|-2,f(-1)=-1,則f(x)<0的解集為(  )
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目: 來源: 題型:填空題

9.設(shè)復(fù)數(shù)z滿足(3-4i)z=5(i是虛數(shù)單位),則z=$\frac{3}{5}+\frac{4}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.若集合A={x|1<x<3},B={x|x>2},則A∩B=( 。
A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.{x|x>1}

查看答案和解析>>

同步練習(xí)冊答案