相關(guān)習(xí)題
 0  228212  228220  228226  228230  228236  228238  228242  228248  228250  228256  228262  228266  228268  228272  228278  228280  228286  228290  228292  228296  228298  228302  228304  228306  228307  228308  228310  228311  228312  228314  228316  228320  228322  228326  228328  228332  228338  228340  228346  228350  228352  228356  228362  228368  228370  228376  228380  228382  228388  228392  228398  228406  266669 

科目: 來源: 題型:填空題

7.已知拋物線y2=2px(p>0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點(diǎn)F,A是兩曲線的一個交點(diǎn),且AF⊥x軸,則雙曲線的離心率是$\sqrt{2}$+1.

查看答案和解析>>

科目: 來源: 題型:解答題

6.在棱長為1的正方體ABCD-A1B1C1D1中,F(xiàn)為B1C1的中點(diǎn),求二面角A1-AD1-F的大小

查看答案和解析>>

科目: 來源: 題型:解答題

5.如題(19)圖,四邊形ABCD為菱形,四邊形BDEF為F平行四邊形,平面BDEF⊥平面ACE,設(shè)AC∩BD=O,AB=AC=2,BF=$\sqrt{3}$.
(Ⅰ)證明:平面BDEF⊥平面ABCD,
(Ⅱ)若點(diǎn)D到平面ACE的距離為$\frac{\sqrt{3}}{2}$,求二面角C-EF-O的正切值.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$的焦距等于( 。
A.2B.4C.3D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與拋物線y2=4x的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若雙曲線的離心率為2,則△AOB的面積為(  )
A.2B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.某市交管部門隨機(jī)抽取了89位司機(jī)調(diào)查有無酒駕習(xí)慣,匯總數(shù)據(jù)的如表:
男性女性合計
無酒駕習(xí)慣31
有酒駕習(xí)慣8
合計89
已知在這89人隨機(jī)抽取1人,抽到無酒駕習(xí)慣的概率為$\frac{57}{89}$,
(1)將如表中空白部分?jǐn)?shù)據(jù)補(bǔ)充完整;
(2)若從有酒駕習(xí)慣的人中按性別用分層抽樣的方法抽取8人參加某項(xiàng)活動,現(xiàn)從這8人中隨機(jī)抽取2人,記抽到女性的人數(shù)為X,求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,點(diǎn)E為線段AB上異于A,B的點(diǎn),且EF∥AD,沿EF將面EBCF折起,使平面EBCF⊥平面AEFD,如圖2.
(Ⅰ)求證:AB∥平面DFC;
(Ⅱ)當(dāng)三棱錐F-ABE體積最大時,求鈍二面角B-AC-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE=$\frac{1}{3}$BB1,C1F=$\frac{1}{3}$CC1
(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點(diǎn),A1G與平面AEF交于H,且設(shè)$\overrightarrow{{A}_{1}H}$=$λ\overrightarrow{{A}_{1}G}$,求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.(1)設(shè)中心在原點(diǎn)的橢圓與雙曲線2x2-2y2=1有公共的焦點(diǎn),且它們的離心率互為倒數(shù),求該橢圓的標(biāo)準(zhǔn)方程.
(2)求以橢圓3x2+13y2=39的焦點(diǎn)為焦點(diǎn),以直線y=±$\frac{x}{2}$為漸近線的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知點(diǎn)A為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上任意一點(diǎn),且它到雙曲線的兩條漸近線的距離之積為定值3,則$\frac{1}{a^2}$+$\frac{1}{b^2}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案