相關習題
 0  229287  229295  229301  229305  229311  229313  229317  229323  229325  229331  229337  229341  229343  229347  229353  229355  229361  229365  229367  229371  229373  229377  229379  229381  229382  229383  229385  229386  229387  229389  229391  229395  229397  229401  229403  229407  229413  229415  229421  229425  229427  229431  229437  229443  229445  229451  229455  229457  229463  229467  229473  229481  266669 

科目: 來源: 題型:填空題

7.拋物線y2=4x的焦點F關于直線y=2x的對稱點坐標為(-$\frac{3}{5}$,$\frac{4}{5}$).

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知圓C1:x2+y2=r2和橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)若過圓C1上一點(x0,y0)作圓C1的切線,則切線方程為x0x+y0y=r2,類比圓的這一性質(zhì),若過橢圓C2上一點(x0,y0)作橢圓C2的切線,請寫出切線的方程,并證明你的結論;
(2)如圖1,設A,B,C,D分別是圓C1與坐標軸的四個交點,過圓C1上任意一點P(x0,y0)(不與A,B,C,D重合)的切線交x軸于點Q,連接PA交x軸于點H,則QD,QH,QC成等比數(shù)列,類比圓的這一性質(zhì),敘述在橢圓C2(如圖2)中類似的性質(zhì),并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知橢圓C的中心在原點,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,它的一個頂點恰好是拋物線x2=4$\sqrt{2}$y的焦點.
(1)求橢圓C的方程;
(2)直線x=2與橢圓交于P,Q兩點,P點位于第一象限,A,B是橢圓上位于直線x=2兩側的動點.當點A,B運動時,滿足∠APQ=∠BPQ,問直線AB的斜率是否為定值,如果為定值,求出斜率的值;如果不為定值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(0,$\sqrt{2}$),且其離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)斜率為$\frac{1}{2}$的直線l交橢圓C于兩個不同點A、B,點M的坐標為(2,1),設直線MA與MB的斜率分別為k1、k2
①若直線l過橢圓C的左頂點,求此時k1、k2的值;
②試探究k1+k2是否為定值?并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.求下列不定積分:
(1)∫(sec2x-2x+2)dx;
(2)∫x2$\sqrt{x}$dx;
(3)∫(1+tan2x)dx;
(4)∫(x2+1)2dx;
(5)∫(ex-$\frac{1}{{x}^{2}}$)dx;
(6)∫(cosx+$\frac{1}{x}$)dx;
(7)∫$\frac{1+2{x}^{2}}{{x}^{2}(1+{x}^{2})}$dx;
(8)∫$\frac{cos2x}{si{n}^{2}xco{s}^{2}x}$dx;
(9)∫$\frac{1}{1+cos2x}$dx;
(10)∫sin2$\frac{x}{2}$dx.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的四個頂點構成面積為4的四邊形,C的離心率為$\frac{\sqrt{3}}{2}$.
(I)求橢圓C的方程;
(Ⅱ)橢圓C的上、下頂點分別為A,B,過點T(t,2)(t≠0)的直線TA,TB分別與C相交于P,Q兩點,若△TAB的面積是△TPQ的面積的λ倍,求λ的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.將圓C:x2+y2=4上點的橫坐標的單位長度保持不變,縱坐標的單位長度縮短為原來的$\frac{1}{2}$.
(1)求壓縮后的曲線方程;
(2)圓C上點P($\sqrt{2}$,$\sqrt{2}$)的切線,經(jīng)過壓縮后與壓縮后曲線有何關系?

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{3}+{y^2}$=1,過點M(2,0)任作一條直線與C交于不同的兩點A、B.
(1)求△OAB的面積的最大值;
(2)若橢圓C的左頂點為N,直線l:x=$\frac{3}{2}$,直線NA和NB交直線l與PQ兩點,設A、B、P、Q的縱坐標分別為y1、y2、y3、y4.求證:$\frac{1}{y_1}$+$\frac{1}{y_2}$=$\frac{1}{y_3}$+$\frac{1}{y_4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)設集合A={x|f(x)≤|x-4|},集合B={x|1≤x≤2},且B⊆A,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.函數(shù)f(x)=$\frac{{x}^{3}+x}{{x}^{4}+6{x}^{2}+1}$+1的最大值與最小值的乘積為( 。
A.2B.$\frac{7}{9}$C.$\frac{15}{16}$D.$\frac{17}{16}$

查看答案和解析>>

同步練習冊答案