相關(guān)習(xí)題
 0  229611  229619  229625  229629  229635  229637  229641  229647  229649  229655  229661  229665  229667  229671  229677  229679  229685  229689  229691  229695  229697  229701  229703  229705  229706  229707  229709  229710  229711  229713  229715  229719  229721  229725  229727  229731  229737  229739  229745  229749  229751  229755  229761  229767  229769  229775  229779  229781  229787  229791  229797  229805  266669 

科目: 來源: 題型:選擇題

10.已知點M,N是拋物線y=4x2上不同的兩點,F(xiàn)為拋物線的焦點,且滿足∠MFN=135°,弦MN的中點P到直線l:y=-$\frac{1}{16}$的距離為d,若|MN|2=λ•d2,則λ的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.1-$\frac{\sqrt{2}}{2}$C.1+$\frac{\sqrt{2}}{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.在空間直角坐標(biāo)系O-xyz中,已知某四面體的四個頂點坐標(biāo)分別是A(1,0,0),B(0,1,0),C(0,0,2),D(1,1,2),則該四面體的正視圖的面積不可能為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{14}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\sqrt{3}$x,焦點到漸近線的距離為$\sqrt{3}$.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)直線l:y=kx與雙曲線左、右兩支分別交于A,B兩點,直線l′:y=-$\frac{1}{k}$x與雙曲線左支交于C點,求三角形ABC面積的最小值及取最小值時k的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.某幾何體的正視圖和側(cè)視圖都是如圖所示的直角邊長a的等腰直角三角形,則該幾何體的體積不可能是( 。
A.$\frac{{a}^{3}}{6}$B.$\frac{{a}^{3}}{3}$C.$\frac{{a}^{3}}{2}$D.$\frac{π{a}^{3}}{12}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)=x3-$\frac{3}{2}$ax2,且關(guān)于x的方程f(x)+a=0有三個不等的實數(shù)根,則實數(shù)a的取值范圍是( 。
A.(-∞,-$\sqrt{2}$)∪(0,$\sqrt{2}$)B.(-$\sqrt{2}$,0)∪($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,$\sqrt{2}$)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如果方程$\frac{{x}^{2}}{{a}^{2}-4}$+$\frac{{y}^{2}}{a+1}$=1表示焦點在y軸上的雙曲線,那么a的取值范圍是(  )
A.(-2,2)B.(-1,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知$\overrightarrow{a}$=(1,2),2$\overrightarrow{a}$-$\overrightarrow$=(3,1),則$\overrightarrow{a}$•$\overrightarrow$=5.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知焦點為F的拋物線C:y2=4x,點P(1,1),點A在拋物線C上,則|PA|+|AF|的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知拋物線C:x2=4y,過點P(t,0)(其中t>0)作互相垂直的兩直線l1,l2,直線l1與拋物線C相切于點Q(在第一象限內(nèi)),直線l2與拋物線C相交于A,B兩點.
(Ⅰ)當(dāng)t=1時,求直線l1的方程;
(Ⅱ)求證:直線l2恒過定點.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.一個四面體的頂點在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(2,0,2),(2,2,0),(0,2,2),(0,0,0),畫該四面體三視圖中的正視圖時,以zOx平面為投影面,則得到正視圖可以為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案