相關習題
 0  229830  229838  229844  229848  229854  229856  229860  229866  229868  229874  229880  229884  229886  229890  229896  229898  229904  229908  229910  229914  229916  229920  229922  229924  229925  229926  229928  229929  229930  229932  229934  229938  229940  229944  229946  229950  229956  229958  229964  229968  229970  229974  229980  229986  229988  229994  229998  230000  230006  230010  230016  230024  266669 

科目: 來源: 題型:填空題

12.過點(-1,0)的直線l與圓C:x2+y2-4x=0交于A,B兩點,若△ABC為等邊三角形,則直線l的斜率為$±\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.180B.360C.144+72$\sqrt{2}$D.108

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知圓C1:(x+1)2+y2=1和圓C2:(x-4)2+y2=4.
(1)過點P(-2,-2)引圓C2的兩條割線l1和l2,直線l1和l2被圓C2截得的弦的中點分別為M,N.求過點P,M,N,C2的圓被直線PC1所截的弦長;
(2)過圓C2上任一點Q(x0,y0)作圓C1的兩條切線,設兩切線分別與y軸交于點S和T.求線段ST長度的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知直線l:mx+$\sqrt{2}$ny=2與圓O:x2+y2=1交于A、B兩點,若△AOB為直角三角形,則點M(m,n)到點P(-2,0)、Q(2,0)的距離之和( 。
A.最大值為6$\sqrt{2}$B.最小值為3$\sqrt{2}$C.是一個常數(shù)4$\sqrt{3}$D.是一個常數(shù)4$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

8.若存在α,β∈R,使得$\left\{{\begin{array}{l}{t={{cos}^3}β+\frac{α}{2}cosβ}\\{α≤t≤α-5cosβ}\end{array}}\right.$,則實數(shù)t的取值范圍是[$-\frac{2}{3}$,1].

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知圓C:x2+y2-2x-4y+1=0上存在兩點關于直線l:x+my+1=0對稱,經(jīng)過點M(m,m)作圓的兩條切線,切點分別為P,Q,則|PQ|=( 。
A.3B.$2\sqrt{3}$C.$\sqrt{13}$D.$\frac{{12\sqrt{13}}}{13}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.2015年7月31日,國際奧委會在吉隆坡正式宣布2022年奧林匹克冬季奧運會(簡稱冬奧會)在北京和張家口兩個城市舉辦.某中學為了普及奧運會知識和提高學生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機選取3人,用ξ表示所選3人中甲組的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學期望.附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2>k00.1000.0500.010
K2.7063.8416.635

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在三棱錐P-ABC中,PA=2$\sqrt{3}$,PC=2,AB=$\sqrt{7}$,BC=3,∠ABC=$\frac{π}{2}$,則三棱錐P-ABC外接球的表面積為(  )
A.B.$\frac{16}{3}$πC.$\frac{32}{3}$πD.16π

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.當直線l與C相切時,實數(shù)a=$±\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知正三棱柱(底面是正三角形,側(cè)棱與底面垂直)的體積為3$\sqrt{3}$cm3,所有頂點都在球O的球面上,則球O的表面積的最小值為12πcm2

查看答案和解析>>

同步練習冊答案