相關(guān)習(xí)題
 0  230769  230777  230783  230787  230793  230795  230799  230805  230807  230813  230819  230823  230825  230829  230835  230837  230843  230847  230849  230853  230855  230859  230861  230863  230864  230865  230867  230868  230869  230871  230873  230877  230879  230883  230885  230889  230895  230897  230903  230907  230909  230913  230919  230925  230927  230933  230937  230939  230945  230949  230955  230963  266669 

科目: 來源: 題型:解答題

19.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>$\sqrt{3}$)的右焦點(diǎn)為F,右頂點(diǎn)為M,且$\frac{1}{{|{OF}|}}$+$\frac{1}{{|{OM}|}}$=$\frac{3e}{{|{FM}|}}$,(其中O為原點(diǎn)),e為橢圓的離心率.
(1)求橢圓C方程;
(2)若過點(diǎn)F的直線l與C相交于A,B兩點(diǎn),在x軸上是否存在點(diǎn)N,使得$\overrightarrow{NA}$•$\overrightarrow{NB}$為定值?如果有,求出點(diǎn)N的坐標(biāo)及相應(yīng)定值;如果沒有,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

18.設(shè)命題p:“若ex>1,則x>0”,命題q:“若a>b,則$\frac{1}{a}$<$\frac{1}$”,則命題“p∧q”為假命題. (填“真”或“假”)

查看答案和解析>>

科目: 來源: 題型:填空題

17.若三點(diǎn)A(2,2),B(a,0),C(0,b)(a>0,b>0)共線,則2a+3b的取值范圍為$[{10+4\sqrt{6},+∞})$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.下列函數(shù)的最小值是2的為( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.y=x+$\frac{1}{x-1}$(x>1)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知{an}為等比數(shù)列,且an>0,a2a4+2a3a5+a4a6=9,那么a3+a5=( 。
A.3B.9C.12D.18

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,AD∥BC,過A、C、D三點(diǎn)的圓O與直線AB相切,且圓O過線段BC的中點(diǎn)E.
(1)求證:∠B=∠ACD;
(2)求$\frac{AC}{CD}$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.100×99×98×…×85等于( 。
A.A${\;}_{100}^{14}$B.A${\;}_{100}^{15}$C.A${\;}_{100}^{16}$D.A${\;}_{100}^{17}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.在△ABC中,已知$\sqrt{3}$tanAtanB-tanA-tanB=$\sqrt{3}$.
(1)求∠C的大;
(2)設(shè)角A,B,C的對(duì)邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知f(x)是定義在(0,+∞)上的減函數(shù),若f(2a2+a+1)<f(3a2-4a+1)成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{{(n+1){a_n}}}{2}$,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=lnan,是否存在k(k≥2,k∈N*),使得bk,bk+1,bk+2成等比數(shù)列.若存在,求出所有符合條件的k值;若不存在,請(qǐng)說明理由;
(3)已知當(dāng)n∈N*且n≥6時(shí),(1-$\frac{m}{n+3}}$)n<($\frac{1}{2}}$)m,其中m=1,2,…,n,求滿足等式3n+4n+…+(n+2)n=(an+3)${\;}^{{a}_{n}}$的所有n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案