相關(guān)習(xí)題
 0  230794  230802  230808  230812  230818  230820  230824  230830  230832  230838  230844  230848  230850  230854  230860  230862  230868  230872  230874  230878  230880  230884  230886  230888  230889  230890  230892  230893  230894  230896  230898  230902  230904  230908  230910  230914  230920  230922  230928  230932  230934  230938  230944  230950  230952  230958  230962  230964  230970  230974  230980  230988  266669 

科目: 來源: 題型:解答題

16.在正方體ABCD-A1B1C1D1中,求證:BD1⊥平面AB1C.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在菱形ABCD中,∠ABC=60°,AE⊥平面ABCD,CF⊥平面ABCD,AB=AE=2,CF=3.
(I)求證:EF⊥平面BDE;
(Ⅱ)求二面角B-DF-E的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在多面體ABCDEFG中,四邊形ABCD與CDEF均為正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH.
(1)求證:平面AGH⊥平面EFG;
(2)求二面角D-FG-E的大小的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖甲,設(shè)正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在AB,CD上,并且滿足AE=2EB,CF=2FD,如圖乙,將直角梯形AEFD沿EF折到A1EFD1的位置,使點(diǎn)A1在平面EBCF上的射影G恰好在BC上.M點(diǎn)為EA1的中點(diǎn).
(1)證明:BM∥平面CD1F;
(2)求二面角M-BF-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在各棱長均為2的三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,且∠A1AC=$\frac{π}{3}$,點(diǎn)O為AC的中點(diǎn).
(Ⅰ)求證:平面ABC⊥平面A1OB;
(Ⅱ)求二面角B1-AC-B的大。

查看答案和解析>>

科目: 來源: 題型:解答題

11.四邊形ABCD是菱形,ACEF是矩形,平面ACEF⊥平面ABCD,AB=2AF=2,∠BAD=60°,G是BE的中點(diǎn).
(Ⅰ)證明:CG∥平面BDF
(Ⅱ)求二面角E-BF-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知($\sqrt{2}$+1)m=$\sqrt{2}$xm+ym,其中m,xm,ym∈N*
(1)求證:ym為奇數(shù);
(2)定義:[x]表示不超過實(shí)數(shù)x的最大整數(shù).已知數(shù)列{an}的通項(xiàng)公式為an=[$\sqrt{2}$n],求證:存在{an}的無窮子數(shù)列{bn},使得對任意的正整數(shù)n,均有bn除以4的余數(shù)為1.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖甲,在平面四邊形PABC中,PA=AC=2,PA=AC=2,∠P=45°,∠B=90°,∠PCB=105°,現(xiàn)將四邊形PABC沿AC折起,使平面PAC⊥平面ABC(如圖乙),點(diǎn)D是棱PB的中點(diǎn).
(Ⅰ)求證:BC⊥AD;
(Ⅱ)試探究在棱PC上是否存在點(diǎn)E,使得平面ADE與平面ABC所成的二面角的余弦值為$\frac{{\sqrt{21}}}{7}$.若存在,請確定點(diǎn)E的位置;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖所示.在△ABC中,已知AB<BC,點(diǎn)I為其內(nèi)心,M為邊AC上的中點(diǎn),N為外接圓的弧$\widehat{ABC}$的中點(diǎn).證明:∠IMA=∠INB.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知某幾何體由相同的n個(gè)小正方體構(gòu)成,其三視圖如圖所示,則n=(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案