相關(guān)習(xí)題
 0  231091  231099  231105  231109  231115  231117  231121  231127  231129  231135  231141  231145  231147  231151  231157  231159  231165  231169  231171  231175  231177  231181  231183  231185  231186  231187  231189  231190  231191  231193  231195  231199  231201  231205  231207  231211  231217  231219  231225  231229  231231  231235  231241  231247  231249  231255  231259  231261  231267  231271  231277  231285  266669 

科目: 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.集合A={x∈N|$\frac{3}{5-x}$∈Z}的非空真子集的個(gè)數(shù)為( 。
A.6B.8C.14D.15

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.圓C:(x-1)2+(y-$\sqrt{3}}$)2=2截直線l:x+$\sqrt{3}$y-6=0所得弦長(zhǎng)為2.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{{2}^{x}-1}$+a是奇函數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用單調(diào)性的定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(3)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$且方程f(x)=ax恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是[$\frac{1}{3}$,$\frac{1}{e}$).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.若方程$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1有增根,則增根是1.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.若0<x-$\frac{1}{x}$<1,則x的取值范圍{x|$\frac{1-\sqrt{5}}{2}$<x<0,或 x>$\frac{1+\sqrt{5}}{2}$ }.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線C1的極坐標(biāo)方程是ρsinθ+ρcosθ-1=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α是參數(shù)).
(1)求直線C1和圓C2的交點(diǎn)的極坐標(biāo);
(2)若直線l經(jīng)過(guò)直線C1和圓C2交點(diǎn)的中點(diǎn),且垂直于直線C1,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.已知定義在R上的偶函數(shù)f(x)的周期是4,當(dāng)x∈[0,2]時(shí),f(x)=|2x-2|,若g(x)=f(x)-|($\frac{1}{2}$)x-$\frac{1}{2}$|,則當(dāng)x∈[-12,12]時(shí),函數(shù)g(x)的零點(diǎn)個(gè)數(shù)是( 。
A.6B.12C.24D.13

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.對(duì)于任意實(shí)數(shù)x1,x2,max{x1,x2}表示x1,x2中較大的那個(gè)數(shù),則當(dāng)x∈R時(shí),函數(shù)f(x)=max{2-x2,x},x∈[-3,$\frac{1}{2}$]的最大值與最小值的差是5.

查看答案和解析>>

同步練習(xí)冊(cè)答案