相關習題
 0  231191  231199  231205  231209  231215  231217  231221  231227  231229  231235  231241  231245  231247  231251  231257  231259  231265  231269  231271  231275  231277  231281  231283  231285  231286  231287  231289  231290  231291  231293  231295  231299  231301  231305  231307  231311  231317  231319  231325  231329  231331  231335  231341  231347  231349  231355  231359  231361  231367  231371  231377  231385  266669 

科目: 來源: 題型:解答題

11.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2$\sqrt{5}$sinθ.若點P的坐標為(3,$\sqrt{5}}$),求PA+PB的值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知函數(shù)f(x)=x2-ax,g(x)=b+aln(x-1),存在實數(shù) a(a≥1),使y=f(x)的圖象與y=g(x)的圖象無公共點,則實數(shù)b的取值范圍為(-∞,$\frac{3}{4}$+ln2).

查看答案和解析>>

科目: 來源: 題型:解答題

9.在直角坐標系xOy中,曲線C1:$\left\{\begin{array}{l}x=2+cosα\\ y=3+sinα\end{array}\right.$(α為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為:θ=$\frac{π}{4}$(ρ∈R).
(I)求曲線C1的普通方程和曲線C2的直角坐標方程;
(Ⅱ)設C1與C2的交點為M,N,求|MN|.

查看答案和解析>>

科目: 來源: 題型:解答題

8.直平行六面體各棱的長都等于5,底面兩條對角線的平方差為50,求這個平行六面體的全面積.

查看答案和解析>>

科目: 來源: 題型:解答題

7.三棱柱ABC-A1B1C1中,AB=AC=10,BC=12,頂點A1與A、B、C的距離都等于13,求這個三棱柱的側(cè)面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.函數(shù)f(x)=x2-|x|-6,則f(x)的零點個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=2log3(x-a)-1og3(x+3).
(1)當a=3時,解不等式f(x)≥0;
(2)當x∈(-3,+∞)時,f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.以橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的中心O為圓心,且以其短軸長為直徑的圓可稱為該橢圓的“伴隨圓”,記為C1.已知橢圓C的右焦點為($\frac{{\sqrt{3}}}{2}$,0),且過點($\frac{1}{2}$,$\frac{{\sqrt{3}}}{4}$).
(I)求橢圓C及其“伴隨圓”C1的方程;
(Ⅱ)過點M(t,0)作C1的切線l交橢圓C于A,B兩點,求△AOB(O為坐標原點)的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=loga(ax-1)(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若f(x)>1,求x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知圓的極坐標方程為ρ=4cosθ,圓心為C,點P的極坐標為(4,$\frac{π}{3}$),則|CP|為( 。
A.2$\sqrt{3}$B.$\sqrt{4+\frac{π^2}{9}}$C.$\sqrt{1+\frac{π^2}{9}}$D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案