相關(guān)習(xí)題
 0  232065  232073  232079  232083  232089  232091  232095  232101  232103  232109  232115  232119  232121  232125  232131  232133  232139  232143  232145  232149  232151  232155  232157  232159  232160  232161  232163  232164  232165  232167  232169  232173  232175  232179  232181  232185  232191  232193  232199  232203  232205  232209  232215  232221  232223  232229  232233  232235  232241  232245  232251  232259  266669 

科目: 來源: 題型:選擇題

17.從正方體ABCD A1B1C1D1的8個頂點(diǎn)中選取4個作為四面體的頂點(diǎn),可得到的不同四面體的個數(shù)為( 。
A.66B.64C.62D.58

查看答案和解析>>

科目: 來源: 題型:填空題

16.定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]g{x},g(x)=x-1,當(dāng)0≤x≤k時,不等式f(x)<g(x)的解集區(qū)間的長度為10,則 k=12.

查看答案和解析>>

科目: 來源: 題型:填空題

15.以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).則曲線C的直角坐標(biāo)方程為(x-$\frac{\sqrt{2}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.設(shè)集合A={3,x2},B={x,y},若A∩B={2},則y的值為( 。
A.1B.2C.4D.3

查看答案和解析>>

科目: 來源: 題型:解答題

13.有一圓心角為60°半徑為1的扇形鐵板.工人師傅要裁出一個面積最大的矩形,下列兩種裁法哪一種更好,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.如圖所示為一個幾何體的三視圖,則該幾何體的體積為( 。
A.24π-16B.24π+16C.24π-18D.24π+48

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知數(shù)列{ an }滿足a1=$\frac{2}{3}$,且對任意的正整數(shù)m,n,都有am+n=am+an.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若恒有$\sum_{i=1}^{n}$$\frac{1}{{S}_{i}}$<T(n∈N*),則T的最小整數(shù)值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)關(guān)于x,y的不等式組$\left\{\begin{array}{l}{2x-y+1>0}\\{x-m<0}\\{y+m>0}\end{array}\right.$表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)滿足x0-2y0=2,則m的取值范圍是( 。
A.(-∞,3)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.[$\frac{2}{3}$,2]

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=6,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=2,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.3D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13,
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和.
(Ⅲ)求{anbn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案