相關(guān)習(xí)題
 0  232114  232122  232128  232132  232138  232140  232144  232150  232152  232158  232164  232168  232170  232174  232180  232182  232188  232192  232194  232198  232200  232204  232206  232208  232209  232210  232212  232213  232214  232216  232218  232222  232224  232228  232230  232234  232240  232242  232248  232252  232254  232258  232264  232270  232272  232278  232282  232284  232290  232294  232300  232308  266669 

科目: 來源: 題型:解答題

9.2015年高考結(jié)束,某學(xué)校對高三畢業(yè)生的高考成績進(jìn)行調(diào)查,高三年級共有1到6個(gè)班,從六個(gè)班隨機(jī)抽取50人,對于高考的考試成績達(dá)到自己的實(shí)際水平的情況,并將抽查的結(jié)果制成如下的表格,
班級123456
頻數(shù)610121264
達(dá)到366643
(1)根據(jù)上述的表格,估計(jì)該校高三學(xué)生2015年的高考成績達(dá)到自己的實(shí)際水平的概率;
(2)若從5班、6班的調(diào)查中各隨機(jī)選取2同學(xué)進(jìn)行調(diào)查,調(diào)查的4人中高考成績沒有達(dá)到實(shí)際水平的人數(shù)為ξ,求隨機(jī)ξ的分布列和數(shù)學(xué)的期望值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知正項(xiàng)等比數(shù)列{an}前n項(xiàng)和為Sn,且滿足S3=$\frac{7}{2}$,a6,3a5,a7成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn=$\frac{1}{(2lo{g}_{2}{a}_{n+1}+3)^{2}-1}$,且數(shù)列bn的前n項(xiàng)的和Tn,試比較Tn與$\frac{1}{4}$的大。

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知$\overrightarrow{m}$=(sinx,$\frac{1}{2}$),$\overrightarrow{n}$=(cosx,cos(2x+$\frac{π}{6}$)),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{3}{2}$
(1)試求函數(shù)f(x)的單調(diào)遞增區(qū)間
(2)在銳角△ABC中,△ABC的三角A,B,C所對的邊分別為a,b,c,且f(C)=$\frac{3}{2}$,且c=$\sqrt{3}$,求a-$\frac{1}{2}$b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.在△ABC中,若$(\;{a^2}+{c^2}-{b^2})tanB=\sqrt{3}$ac,則角B=( 。
A.30°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在半徑為1的圓中隨機(jī)地撒一大把豆子,則豆子落在圓內(nèi)接正方形中的概率為( 。
A.$\frac{2}{π}$B.$\frac{1}{π}$C.$\frac{{\sqrt{2}}}{π}$D.$\frac{3}{π}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),且對任意的x1∈[-1,2],都存在x2∈[-1,2],使f(x2)=g(x1),則實(shí)數(shù)a的取值范圍是(  )
A.[3,+∞)B.(0,3]C.[$\frac{1}{2}$,3]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)=sinx+cosx,x∈(0,π),且f′(x)=0,則x=( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),橢圓E的右焦點(diǎn)到直線x-y+1=0的距離為$\sqrt{2}$,橢圓E的右頂點(diǎn)到右焦點(diǎn)與到直線x=2的距離之比為$\frac{{\sqrt{2}}}{2}$
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)O作兩條動(dòng)直線AC、BD分別交橢圓E與A、C和B、D兩點(diǎn),且滿足$\overrightarrow{AC}•\overrightarrow{BD}$=0,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.三個(gè)正數(shù)a,b,c滿足a≤b+c≤2a,b≤a+c≤2b,則$\frac{a}$的取值范圍是(  )
A.[$\frac{2}{3}$,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.[2,3]D.[1,2]

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)數(shù)列{an}滿足a1=0,且$\frac{1}{{1-{a_{n+1}}}}$-$\frac{1}{{1-{a_n}}}$=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{1-{a_{n+1}}}}{n}$,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案