相關(guān)習(xí)題
 0  232166  232174  232180  232184  232190  232192  232196  232202  232204  232210  232216  232220  232222  232226  232232  232234  232240  232244  232246  232250  232252  232256  232258  232260  232261  232262  232264  232265  232266  232268  232270  232274  232276  232280  232282  232286  232292  232294  232300  232304  232306  232310  232316  232322  232324  232330  232334  232336  232342  232346  232352  232360  266669 

科目: 來源: 題型:填空題

18.拋物線y2=4x上任一點(diǎn)到定直線l:x=-1的距離與它到定點(diǎn)F的距離相等,則該定點(diǎn)F的坐標(biāo)為(1,0).

查看答案和解析>>

科目: 來源: 題型:填空題

17.設(shè)實(shí)數(shù)a,b均為區(qū)間[0,1]內(nèi)的隨機(jī)數(shù),則關(guān)于x的不等式$b{x^2}+ax+\frac{1}{4}<0$有實(shí)數(shù)解的概率為$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.己知函數(shù)$f(x)=xlnx-\frac{a}{2}{x^2}$(a∈R),
(Ⅰ) 若函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為x+y+b=0,求實(shí)數(shù)a,b的值;
(Ⅱ) 若函數(shù)f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.復(fù)數(shù)z=1+2i(i為虛數(shù)單位),$\overrightarrow{z}$為z的共軛復(fù)數(shù),則下列結(jié)論正確的是( 。
A.$\overrightarrow{z}$的實(shí)部為-1B.$\overrightarrow{z}$的虛部為-2iC.z•$\overrightarrow{z}$=5D.$\frac{\overrightarrow{z}}{z}$=i

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)$f(x)=lnx+\frac{1}{2}a{x^2}-({a+1})x({a∈R})$.
(I)a=1時(shí),求函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)當(dāng)a>0時(shí),若函數(shù)y=f(x)在區(qū)間[1,e]上的最小值為-2,求a的值;
(Ⅲ)若關(guān)于x的方程$f(x)=\frac{1}{2}a{x^2}$有兩個(gè)不同實(shí)根x1,x2,求實(shí)數(shù)a的取值范圍并證明:${x_1}•{x_2}>{e^2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+x2+bx(a為實(shí)常數(shù)).
(I)若a=-2,b=-3,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若b=0,且a>-2e2,求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知正三角形ABC的三個(gè)頂點(diǎn)都在球心為O、半徑為2的球面上,且三棱錐O-ABC的高為1,點(diǎn)D是線段BC的中點(diǎn),過點(diǎn)D作球O的截面,則截面面積的最小值為$\frac{9π}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x}(a∈R)$.
(Ⅰ)若a=1,求y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:不等式$\frac{1}{lnx}-\frac{1}{x-1}<\frac{1}{2}$對(duì)一切的x∈(1,2)恒成立.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知f(x)=ax-lnx,a∈R.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=ex-a(x+1)(e是自然對(duì)數(shù)的底數(shù),e=2.71828…).
(1)若f'(0)=0,求實(shí)數(shù)a的值,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的a≤-1,恒有g(shù)(x2)-g(x1)>m(x2-x1)成立,求實(shí)數(shù)m的取值范圍;
(3)求證:1n+3n+…+(2n-1)n<$\frac{{\sqrt{e}}}{e-1}{(2n)^n}(n∈{N^*})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案