相關習題
 0  232876  232884  232890  232894  232900  232902  232906  232912  232914  232920  232926  232930  232932  232936  232942  232944  232950  232954  232956  232960  232962  232966  232968  232970  232971  232972  232974  232975  232976  232978  232980  232984  232986  232990  232992  232996  233002  233004  233010  233014  233016  233020  233026  233032  233034  233040  233044  233046  233052  233056  233062  233070  266669 

科目: 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=A1B=A1C=$\sqrt{6}$.
(1)證明:平面ABC⊥平面A1BC;
(2)在線段BB1上是否存在點E,使得二面角E-A1C-B的余弦值為$\frac{\sqrt{10}}{5}$?若存在確定點E的位置,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知偶函數(shù)f(x)在R上的任一取值都有導數(shù),f′(1)=-2,f(x-2)=f(x+2),則曲線y=f(x)在x=4k-5(k∈Z)處的切線的斜率為-2.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知數(shù)列{an}中,前6項構成首項為2公差為-2的等差數(shù)列,第7項至第12項構成的首項和公比均為$\frac{1}{2}$的等比數(shù)列,又對任意的n∈N*,都有an+12=an成立,數(shù)列{an}的前n項和為Sn,則S27+2a12等于( 。
A.-36B.-34C.-36-$\frac{1}{{2}^{5}}$D.-34-$\frac{1}{{2}^{5}}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)在實數(shù)集R上可導,其導函數(shù)為f′(x),若x[f(x)-f′(x)]>0,f(0)=2,函數(shù)g(x)=f(x)-kex(e為自然對數(shù)的底)存在零點,則 。
A.實數(shù)k有最大值2B.實數(shù)k有最小值2C.實數(shù)k有最大值$\frac{2}{e}$D.實數(shù)k有最小值$\frac{2}{e}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.在平行四邊形ABCD中,∠BAD=60°,AD=2AB,若P是平面ABCD內(nèi)一點,且滿足x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+$\overrightarrow{PA}$=$\overrightarrow{0}$(x,y∈R),則當點P滿足∠PAB=45°,∠PAD=15°時,實數(shù)x,y應滿足關系式為( 。
A.x+(1-$\sqrt{3}$)y=0(x>0,y>0)B.x-y=0(x>0,y>0)C.x-$\sqrt{2}$y=0(x>0,y>0)D.x-($\sqrt{3}$+1)y=0(x>0,y>0)

查看答案和解析>>

科目: 來源: 題型:選擇題

2.設a,b是兩條不同的直線,α是平面,且a?α,“a∥b”是“b∥α”的( 。
A.充分不必要條件B.必要不從分條件
C.充分不要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知點A,B的坐標分別是$(-\frac{1}{2},0)$,$(\frac{1}{2},0)$,直線AM,BM相交于點M,且直線AM的斜率與直線BM的斜率的差是-1.
(1)過點M的軌跡C的方程;
(2)過原點作兩條互相垂直的直線l1、l2分別交曲線C于點A,C和B,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知圓$M:{({x+\sqrt{5}})^2}+{y^2}$=4,圓$N:{({x-\sqrt{5}})^2}+{y^2}$=4,動圓P與圓M外切并且與圓N內(nèi)切,則動圓圓心P的軌跡方程是$\frac{x^2}{4}-{y^2}=1,({x≥2})$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知函數(shù)f(x)=x2-2cosx,對于$[-\frac{2π}{3},\;\frac{2π}{3}]$上的任意x1,x2有如下條件:
①x1>x2;       ②${x_1}^2>{x_2}^2$;   ③x1>|x2|;   ④|x1|>x2
其中能使f(x1)>f(x2)恒成立的條件是②③ (填寫序號)

查看答案和解析>>

科目: 來源: 題型:填空題

18.函數(shù)f(x)=lg(-x2+4x)的單調(diào)遞增區(qū)間是(0,2).

查看答案和解析>>

同步練習冊答案