相關(guān)習題
 0  233963  233971  233977  233981  233987  233989  233993  233999  234001  234007  234013  234017  234019  234023  234029  234031  234037  234041  234043  234047  234049  234053  234055  234057  234058  234059  234061  234062  234063  234065  234067  234071  234073  234077  234079  234083  234089  234091  234097  234101  234103  234107  234113  234119  234121  234127  234131  234133  234139  234143  234149  234157  266669 

科目: 來源: 題型:選擇題

12.已知tanθ=2,則$\frac{1-sin2θ}{{2{{cos}^2}θ}}$的值為(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)f(x)=sin(ωx+φ),(x∈R,ω>0,0<φ<π)的部分圖象如圖所示,則( 。
A.$ω=\frac{π}{2},φ=\frac{π}{4}$B.$ω=\frac{π}{3},φ=\frac{π}{6}$C.$ω=\frac{π}{4},φ=\frac{π}{4}$D.$ω=\frac{π}{4},φ=\frac{3π}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.若f(x)=Asin(ωx+θ)(A>0,ω>0,|θ|<$\frac{π}{2}$)的圖象如圖所示,
(1)求f(x)的解析式.
(2)求f(x)的單調(diào)區(qū)間及對稱軸.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項為Sn,且a1+a5=-14,S9=-27,則使得Sn取最小值時的n為( 。
A.1B.6C.7D.6或7

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知集合B={-1,0,1},若A⊆B,則滿足條件的A有8 個.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知$\overrightarrow a$=(-2,1),$\overrightarrow b$=(1,λ),若$\overrightarrow a$∥$\overrightarrow b$,則λ=$-\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知Rt△ABC的三邊長分別為AB=5,BC=4,AC=3,在平面直角坐標系中,△ABC的初始位置如圖(圖中CB⊥x軸),現(xiàn)將△ABC沿x軸滾動,設(shè)點A(x,y)的軌跡方程是y=f(x),則f(2017)=( 。
A.$\sqrt{21}$B.$2\sqrt{6}$C.4D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在△OAB中,$\overrightarrow{OA}$=4$\overrightarrow{OC}$,$\overrightarrow{OB}$=2$\overrightarrow{OD}$,AD,BC的交點為M,過M作動直線l分別交線段AC,BD于E,F(xiàn)兩點,若$\overrightarrow{OE}$=λ$\overrightarrow{OA}$,$\overrightarrow{OF}$=μ$\overrightarrow{OB}$,(λ,μ>0),則λ+μ的最小值為( 。
A.$\frac{{2+\sqrt{3}}}{7}$B.$\frac{{3+\sqrt{3}}}{7}$C.$\frac{{3+2\sqrt{3}}}{7}$D.$\frac{{4+2\sqrt{3}}}{7}$

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知等差數(shù)列{an}的前n項和Sn能取到最大值,且滿足:a10+a11<0,a10•a11<0對于以下幾個結(jié)論:
①數(shù)列{an}是遞減數(shù)列;    
②數(shù)列{Sn}是遞減數(shù)列;
③數(shù)列{Sn}的最大項是S10; 
④數(shù)列{Sn}的最小的正數(shù)是S19
其中正確的序號是①③④.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,若對于任意的自然數(shù)n,都有$\frac{S_n}{T_n}$=$\frac{2n-3}{4n-3}$,則$\frac{{{a_3}+{a_{15}}}}{{2({{b_3}+{b_9}})}}$+$\frac{a_3}{{{b_2}+{b_{10}}}}$=( 。
A.$\frac{19}{41}$B.$\frac{17}{37}$C.$\frac{7}{15}$D.$\frac{20}{41}$

查看答案和解析>>

同步練習冊答案