相關(guān)習(xí)題
 0  241308  241316  241322  241326  241332  241334  241338  241344  241346  241352  241358  241362  241364  241368  241374  241376  241382  241386  241388  241392  241394  241398  241400  241402  241403  241404  241406  241407  241408  241410  241412  241416  241418  241422  241424  241428  241434  241436  241442  241446  241448  241452  241458  241464  241466  241472  241476  241478  241484  241488  241494  241502  266669 

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$$\sqrt{3}$(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知sinα+sinβ=$\frac{1}{4}$,cosα+cosβ=$\frac{1}{3}$,則sin(α+β)=$\frac{24}{25}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知方程ex-x-2=0有兩個解x1,x2,則( 。
A.區(qū)間(-2,0)上無解B.區(qū)間(0,1)上有一個解
C.x1+x2<0D.x1+x2>0

查看答案和解析>>

科目: 來源: 題型:選擇題

7.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}\right.$,則z=(x-1)2+(y+1)2的取值范圍為( 。
A.[2,13]B.[4,13]C.[4,$\sqrt{13}$]D.[2,$\sqrt{13}$]

查看答案和解析>>

科目: 來源: 題型:解答題

6.設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點(diǎn),P是橢圓C上的任意一點(diǎn),且△PF1F2的周長為4+2$\sqrt{3}$.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左、右頂點(diǎn)分別為A、B,過橢圓C1上的一點(diǎn)D作x軸的垂線交x軸于點(diǎn)E,若C點(diǎn)滿足$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,$\overrightarrow{AD}$∥$\overrightarrow{OC}$,連接AC交DE于點(diǎn)P,求證:PD=PE.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知$\underset{lim}{x→-2}$$\frac{{x}^{2}+ax+b}{{x}^{2}+x-2}$=-1,則a,b的值為( 。
A.a=7,b=10B.a=7,b=-10C.a=-7,b=10D.a=-7,b=-10

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知f(x)的一個原函數(shù)為$\frac{sinx}{1+xsinx}$,求∫f(x)f′(x)dx.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖所示,在四棱錐P-ABCD中,四邊形ABCD為梯形,AD∥BC,∠ABC=120°,點(diǎn)E在AD上,AE=BC=AB=2,AD=3BC,點(diǎn)F為PD的中點(diǎn),PB⊥AC.
(1)證明:PA=PC;
(2)求點(diǎn)F到平面PBE的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)全集U={-5,-3,1,2,3,4,5,6},集合A={x|x2-7x+12=0},集合B={a2,2a-1,6}.
(1)若a=-1,求(∁UA)∩(∁UB);
(2)若A∩B={4},且B⊆U,求a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知矩形ABCD,AB=2AD=2a(a>0),連接四條邊的中點(diǎn)成一個新的四邊形,記其面積為b1;然后在得到的四邊形中,再連接四條邊的中點(diǎn)又成一個新的四邊形,如圖,記其面積為b2;按此方法依次做下去…
(1)求b1和b2;
(2)記bn為第n次(n∈N*)得到的四邊形的面積,寫出bn關(guān)于n的表達(dá)式(不必證明).
(3)求經(jīng)過n次(n∈N*)后所得n個四邊形的面積之和.

查看答案和解析>>

同步練習(xí)冊答案