相關(guān)習題
 0  256553  256561  256567  256571  256577  256579  256583  256589  256591  256597  256603  256607  256609  256613  256619  256621  256627  256631  256633  256637  256639  256643  256645  256647  256648  256649  256651  256652  256653  256655  256657  256661  256663  256667  256669  256673  256679  256681  256687  256691  256693  256697  256703  256709  256711  256717  256721  256723  256729  256733  256739  256747  266669 

科目: 來源: 題型:

【題目】如圖甲,在直角梯形中,,,,的中點,的交點,將沿折起到的位置,如圖乙.

)證明:平面;

)若平面平面,求點到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】一個盒子中裝有2個紅球,4個白球,除顏色外,它們的形狀、大小、質(zhì)量等完全相同

(1)采用不放回抽樣,先后取兩次,每次隨機取一個球,求恰好取到1個紅球,七個白球的概率;

(2)采用放回抽樣,每次隨機抽取一球,連續(xù)取3次,求至少有1次取到紅球的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

(2)(i)利用(1)所求的回歸方程,預測該市車流量為8萬輛時的濃度;

(ii)規(guī)定:當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))

參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知底角為45的等腰梯形ABCD,底邊BC長為7cm,腰長為,當一條垂直于底邊BC

(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x

(1)試寫出直線l左邊部分的面積f(x)與x的函數(shù).

(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若AB=B,求a的取值范圍。.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的方程為,兩焦點,點在橢圓上.

(1)求橢圓的方程;

(2)如圖,動直線與橢圓有且僅有一個公共點,點、是直線上的兩點,且.求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校進行體驗,現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機抽取50人進行統(tǒng)計(已知這50個身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.

(1)補全頻率分布直方圖;

(2)根據(jù)頻率分布直方圖估計這50位男生身高的中位數(shù);

(3)用分層抽樣的方法在身高為內(nèi)抽取一個容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)處取得極值

(1)求函數(shù)的解析式;

(2)設(shè)函數(shù),若對任意的,總存在唯一的為自然對數(shù)的底數(shù))使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】東莞市某高級中學在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限(單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:

(1)請根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護費用關(guān)于的線性回歸方程;

(2)若規(guī)定當維護費用超過13.1萬元時,該批空調(diào)必須報廢,試根據(jù)(1)的結(jié)論求該批空調(diào)使用年限的最大值.

參考公式:最小二乘估計線性回歸方程中系數(shù)計算公式:

,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓)的左右焦點,,與橢圓在第一象限的交點為,且,三點共線.

)求橢圓的方程;

)設(shè)與直線為原點)平行的直線交橢圓,兩點.當的面積取到最大值時,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】袋中裝有偶數(shù)個球,其中紅球、黑球各占一半,甲、乙、丙是三個空盒.每次從袋中任取兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復上述過程,直到袋中所有球都放入盒中,則( )

A. 乙盒中紅球與丙盒中黑球一樣多

B. 乙盒中黑球不多于丙盒中黑球

C. 乙盒中紅球不多于丙盒中紅球

D. 乙盒中黑球與丙盒中紅球一樣多

查看答案和解析>>

同步練習冊答案