科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,設(shè)傾斜角為的直線(為參數(shù))與曲線(為參數(shù))相交于不同的兩點.
(1)若,求線段中點的坐標;
(2)若,其中,求直線的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.
(1)設(shè)圓求過(2,0)的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;
(3)是否存在點,使過的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點點坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】從某學(xué)校高三年級共800名男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165)、…、第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(1)估計這所學(xué)校高三年級全體男生身高180cm以上(含180cm)的人數(shù);
(2)求第六組、第七組的頻率并補充完整頻率分布直方圖(如需增加刻度請在縱軸上標記出數(shù)據(jù),并用直尺作圖);
(3)由直方圖估計男生身高的中位數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)定義在上且滿足下列兩個條件:
①對任意都有;
②當(dāng)時,有,
(1)求,并證明函數(shù)在上是奇函數(shù);
(2)驗證函數(shù)是否滿足這些條件;
(3)若,試求函數(shù)的零點.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著節(jié)假日外出旅游人數(shù)增多,倡導(dǎo)文明旅游的同時,生活垃圾處理也面臨新的挑戰(zhàn),某海濱城市沿海有三個旅游景點,在岸邊兩地的中點處設(shè)有一個垃圾回收站點(如圖),兩地相距10,從回收站觀望地和地所成的視角為,且,設(shè);
(1)用分別表示和,并求出的取值范圍;
(2)某一時刻太陽與三點在同一直線,此時地到直線的距離為,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求f(2),f(x);
(2)證明:函數(shù)f(x)在[1,17]上為增函數(shù);
(3)試求函數(shù)f(x)在[1,17]上的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】《最強大腦》是江蘇衛(wèi)視推出國內(nèi)首檔大型科學(xué)類真人秀電視節(jié)目,該節(jié)目集結(jié)了國內(nèi)外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強學(xué)生的記憶力和辨識力也組織了一場類似《最強大腦》的PK賽,A、B兩隊各由4名選手組成,每局兩隊各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分,假設(shè)每局比賽兩隊選手獲勝的概率均為0.5,且各局比賽結(jié)果相互獨立.
(1)求比賽結(jié)束時A隊的得分高于B隊的得分的概率;
(2)求比賽結(jié)束時B隊得分X的分布列和期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(分及以上為及格)和平均數(shù)?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形的長為2,寬為1, , 邊分別在軸、軸的正半軸上, 點與坐標原點重合,將矩形折疊,使點落在線段上,設(shè)此點為.
(1)若折痕的斜率為-1,求折痕所在的直線的方程;
(2)若折痕所在直線的斜率為,( 為常數(shù)),試用表示點的坐標,并求折痕所在的直線的方程;
(3)當(dāng)時,求折痕長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com